Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Abrosimov M. B., Sudani H. K., Lobov A. A. Construction of All Minimal Edge Extensions of the Graph with Isomorphism Rejection. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 105-115. DOI: 10.18500/1816-9791-2020-20-1-105-115, EDN: PXDRGJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 359)
Article type: 

Construction of All Minimal Edge Extensions of the Graph with Isomorphism Rejection

Abrosimov Mikhail Borisovich, Saratov State University
Sudani Hayder Husein Karim, Saratov State University
Lobov Alexandr A., Saratov State University

In 1993 Frank Harary and John P. Hayes proposed a graph model for investigating edge fault tolerance of discrete systems. The technical system is mapped to a graph. The elements of the system correspond to the vertices of the graph, and links between the elements correspond to edges or arcs of the graph. Failure of a system element refers to the removal of the corresponding vertex from the system graph along with all its edges. The formalization of a fault tolerant system implementation is the extension of the graph. The graph G∗ is called the edge k-extension of the graph G if, after removing any k edges from the graph G∗ result graph contains the graph G. The edge k-extension of a graph G is called minimal if it has the least number of vertices and edges among all edge k-extensions of a graph G. An algorithm for constructing all nonisomorphic minimal edge k-extensions of a given graph using methods of canonical representatives and Read – Faradjev are proposed.

  1. Hayes J. P. A Graph Model for Fault-tolerant Computing System. IEEE Trans. Computers, 1976, vol. C-25, no. 9, pp. 875–884. DOI: https://doi.org/10.1109/TC.1976.1674712
  2. Harary F., Hayes J. P. Edge Fault Tolerance in Graphs. Networks, 1993, vol. 23, pp. 135– 142. DOI: https://doi.org/10.1002/net.3230230207
  3. Abrosimov M. B. Grafovye modeli otkazoustoichivosti [Fault tolerance graph models]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2012. 192 p. (in Russian).
  4. Bogomolov A. M., Salii V. N. Algebraicheskie osnovy teorii diskretnykh sistem [Algebraic foundations of the theory of discrete systems]. Moscow, Nauka, 1997. 384 p. (in Russian).
  5. Abrosimov M. B. On the Complexity of Some Problems Related to Graph Extensions. Math. Notes, 2010, vol. 88, iss. 5, pp. 619–625. DOI: https://doi.org/10.1134/S0001434610110015
  6. Abrosimov M. B., Kamil I. A. K., Lobov A. A. Construction of All Nonisomorphic Minimal Vertex Extensions of the Graph by the Method of Canonical Representatives. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2019, vol. 19, iss. 4, pp. 479–486 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2019-19-4-479-486
  7. Abrosimov M. B. Minimal graph extensions. In: Novye informatsionnye tekhnologii v issledovanii diskretnykh struktur [New information technologies in the study of discrete structures]. Tomsk, Izdatel’skii dom Tomskogo gosudarstvennogo universiteta, 2000, pp. 59–64 (in Russian).
  8. Abrosimov M. B. Minimal’nye rasshireniia 4-, 5-, 6- i 7-vershinnykh grafov [Minimal extension of graphs with 4, 5, 6 and 7 vertices]. Saratov State University. Saratov, 2000, 26 p.; VINITI 06.09.2000, no. 2352-В00 (in Russian).
  9. Brinkmann G. Isomorphism rejection in structure generation programs. Discrete Mathematical Chemistry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2000, vol. 51, pp. 25–38. DOI: https://doi.org/10.1090/dimacs/051/03
  10. McKay B. D. Graph formats. Available at: http://users.cecs.anu.edu.au/bdm/data/formats.html (accessed 1 May 2019).
  11. McKay B. D., Piperno A. Practical Graph Isomorphism, II. Journal of Symbolic Computation, 2014, vol. 60, pp. 94–112. DOI: https://doi.org/10.1016/j.jsc.2013.09.003
  12. Volga Regional Center for New Information Technologies. Site. Available at: http://prcnit.sgu.ru (accessed 1 May 2019) (in Russian).
  13. Mir grafov (Graph World). Available at: http://graphworld.ru (accessed 1 May 2019) (in Russian).