Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Ryazanov V. V., Ledkov A. S. Descent of Nanosatellite from Low Earth Orbit by Ion Beam. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 1, pp. 82-93. DOI: 10.18500/1816-9791-2019-19-1-82-93, EDN: HQIFSR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.02.2019
Full text:
(downloads: 193)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
531.13
EDN: 
HQIFSR

Descent of Nanosatellite from Low Earth Orbit by Ion Beam

Autors: 
Ryazanov Vladimir Vladimirovich, Samara State University
Ledkov Aleksandr Sergeevich, Samara National Research University
Abstract: 

The work is devoted to the problem of contactless CubSat3U nanosatellites removal from low Earth orbit bymean sof anion beam, which is created by the engine of an active spacecraft. The advant age of this methodis that there is no needfor additional mean sof dockingand gripping. A mathematical model of the nanosatellite plane motion under the action of the ion beam and gravitational forces is developed. Two approaches are used to simulate the ion beam impacton nano satellite.The first one involves the use of known dimensionless aerodynamic coefficients. The second approach is based on the division of the body into triangles and the calculation of the effect of the beam on each of them. Wherein the hypothesis of a complete diffuse reflection of particles from the surface of the body is used. The descent of the nanosatellite from a low Earth orbit to the surface has been simulated. It is shown that both approaches give close results, in particular, the difference in the descent time from analtitude of 500 km does notexceed 4%. The closeness of the result sallows to use aerodynamic characteristics at the stage of preliminary design of the non-functioning satellite removal missions. The obtained results can be used for the ion beam control development and for modeling the motion of the system of contactless space debris removal.

References: 
  1. Kessler D. J., Cour-Palais B. G. Collision frequency of artificial satellites: the creation of a debris belt. Journal of geophysical research, 1978, vol. 83, iss. A6, pp. 2637–2646. DOI: https://doi.org/10.1029/JA083iA06p02637
  2. Veniaminov S. S., Chervonov A. M. Kosmicheskij musor — ugroza chelovechestvu [Space debris — a threat to mankind]. Moscow, Space Research Institute, RAS, 2012, 192 p. (in Russian).
  3. Shan M., Guo J., Gill E. Review and comparison of active space debris capturing and removal methods // Progress in Aerospace Sciences. 2016. Vol. 80. P. 18–32. DOI: https://doi.org/10.1016/j.paerosci.2015.11.001
  4. Dudziak R., Tuttle S., Barraclough, S. Harpoon technology development for the active removal of space debris // Advances in Space Research. 2015. Vol. 56, iss. 5. P. 509–527. DOI: https://doi.org/10.1016/j.asr.2015.04.012
  5. Benvenuto R., Salvi S., Lavagna M. Dynamics analysis and GNC design of flexible systems for space debris active removal // Acta Astronautica. 2015. Vol. 110. P. 247–265. DOI: https://doi.org/10.1016/j.actaastro.2015.01.014
  6. Larouche B. P., Zhu Z. H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control // Autonomous Robots. 2014. Vol. 37, iss. 2. P. 157–167. DOI: https://doi.org/10.1007/s10514-014-9383-2
  7. McMahan W., Chitrakaran V., Csencsits M., Dawson D., Walker I. D., Jones B. A., Pritts M., Dienno D., Grissom M., Rahn C. D. Field trials and testing of the octarm continuum manipulator // IEEE Intern. Conf. on Robotics and Automation. Orlando, Florida, 2006. P. 2336–2341.
  8. Andrenucci M., Pergola P., Ruggiero A. Active removal of space debrisexpanding foam application for active debris removal : ESA Final Report. Pisa, 2011. 132 p. URL: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI... (дата обращения: 21.05.2018).
  9. Phipps C. R. A laser-optical system to re-enter or lower low earth orbit space debris // Acta Astronautica. 2014. Vol. 93. P. 418–429. DOI: https://doi.org/10.1016/j.actaastro.2013.07.031
  10. Merino M., Ahedo E., Bombardelli C., Urrutxua H., Pelaez J. Ion Beam Shepherd Satellite for Space Debris Removal // Progress in Propulsion Physics. 2013. Vol. 4. P. 789–802. DOI: https://doi.org/10.1051/eucass/201304789
  11. Schaub H., Parker G. G., King L. B. Challenges and prospects of Coulomb spacecraft formation control // Journal of Astronautical Sciences. 2004. Vol. 52, iss 1. P. 169–193.
  12. Aslanov V. S. Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque // Nonlinear Dynamics. 2017. Vol. 90, iss. 4. P. 2545–2556. DOI: https://doi.org/10.1007/s11071-017-3822-5
  13. Cichocki F., Merino M., Ahedo E. Modeling and simulation of EP plasma plume expansion into vacuum // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, 2014. P. 5008–5024. DOI: https://doi.org/10.2514/6.2014-3828
  14. Bombardelli C., Merino M., Ahedo E., Pelaez J., Urrutxua H., Iturri-Torreay A., Herrera-Montojoy J. Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal : ESA Final Report. Madrid, 2011. 90 p. URL: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI... (дата обращения: 21.05.2018).
  15. Zuiani F., Vasile M. Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers // Journal of Aerospace Engineering. 2012. Vol. 2012. Article ID 836250. 22 p. DOI: https://doi.org/10.1155/2012/836250
  16. Cichocki F., Merino M., Ahedo E., Smirnova M., Mingo A., Dobkevicius M. Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” missions // Journal of Propulsion and Power. 2016. Vol. 33, iss. 2. P. 370–379. DOI: https://doi.org/10.2514/1.B36105
  17. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object // Acta Astronautica. 2016. Vol. 119. P. 241–251. DOI: https://doi.org/10.1016/j.actaastro.2015.11.020
  18. Aslanov V. S., Ledkov A. S. Attitude motion of cylindrical space debris during its removal by ion beam // Mathematical Problems in Engineering. 2017. Vol. 2017. Article ID 1986374.7 p. DOI: https://doi.org/10.1155/2017/1986374
  19. Aslanov V. S., Ledkov A. S. Tether-assisted re-entry capsule deorbiting from an elliptical orbit // Acta Astronautica. 2017. Vol. 130. P. 180–186. DOI: https://doi.org/10.1016/j.actaastro.2016.10.028
  20.  Lipnickij Ju. M., Krasil’nikov A. V., Pokrovskij A. N., Shmanenkov V. N. Nestacionarnaja ajerodinamika ballisticheskogo poleta [Unsteady aerodynamics of ballistic flight]. Moscow, Fizmatlit, 2003. 176 p. (in Russian).
  21. Andreevskij V. V. Dinamika spuska kosmicheskih apparatov na Zemlju [The dynamics of descent of space vehicles to Earth]. Moscow, Mashinostroenie, 1970. 235 p. (in Russian).
Received: 
28.05.2018
Accepted: 
15.09.2018
Published: 
28.02.2019
Short text (in English):
(downloads: 107)