Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Dol A. V., Gulyaeva A. O., Falkovich A. S., Maystrenko D. N., Generalov M. I., Solovyov A. V., Terin D. V., Lemeshkin M. O. Development and approbation of a mobile test bench for mechanical uniaxial compression testing of biological tissues. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 472-481. DOI: 10.18500/1816-9791-2023-23-4-472-481, EDN: IWZXSA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 440)
Article type: 

Development and approbation of a mobile test bench for mechanical uniaxial compression testing of biological tissues

Dol Alexander V., Saratov State University
Gulyaeva Alena O., Saratov State University
Falkovich Alexander Savelievich, Saratov State University
Maystrenko Dmitry N., Russian Scientific Center for Radiology and Surgical Technologies named after Academician A. M. Granov
Generalov Michail I., Russian Scientific Center for Radiology and Surgical Technologies named after Academician A. M. Granov
Solovyov Alexey V., Vsevolozhsk Clinical Interdistrict Hospital
Terin Denis V., Saratov State University
Lemeshkin Maxim O., Saratov State University

A technique and a prototype of a mobile test bench for conducting experiments on uniaxial compression of biological tissue samples have been developed. The test bench consists of high-precision scales, an electronic caliper with modified grips, and a video camera. With the help of the test bench, a series of experiments (120 in total) was carried out to determine Young's modulus of atherosclerotic plaques and vascular walls removed from the human body no later than a few hours. A database of plaques and artery walls' mechanical characteristics, as close as possible to their real strength properties, has been formed. In addition, regression dependencies linking Hounsfield units and Young’s moduli of atherosclerotic plaques were constructed. The uniaxial compression technique has been verified on the Instron 3342 universal testing machine. Also, to demonstrate the applicability of the developed technique and test bench for uniaxial compression of hard tissues, experiments were conducted with 14 samples of bovine spongy bone.

There is no conflict of interest. The work was carried out within the framework of the State Assignment (project No. FSRR-2023-0009). The work was also supported by Vladimir Potanin Charitable Foundation (project No. GSAD-0013/23). The study was approved by the Ethics Committee of the Federal State Budgetary Institution “Russian Scientific Center for Radiology and Surgical Technologies named after Academician A. M. Granov” (Protocol No. 01-03/2023 from 30.03.2023).
  1. Ivanov D. V., Dol A. V., Kuzyk Yu. I. Biomechanical bases of forecasting occurrence of carotid atherosclerosis. Russian Journal of Biomechanics, 2017, vol. 21, iss. 1, pp. 29–40 (in Russian). https://doi.org/10.15593/RZhBiomeh/2017.1.03, EDN: YMFRLF
  2. Gasser T., Holzapfel G. Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 2007, vol. 35, pp. 711–723. https://doi.org/10.1007/s10439-007-9258-1
  3. Cunnane E. M., Mulvihill J. J. E., Barrett H. E., Hennessy M. M., Kavanagh E. G., Walsh M. T. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: A comparative study. Journal of Biomechanics, 2016, vol. 49, iss. 15, pp. 3697–3704. https://doi.org/10.1016/j.jbiomech.2016.09.036
  4. Holzapfel G. A., Schulze-Bauer C. A. J., Stadler M. Mechanics of angioplasty: Wall, balloon and stent. Proceedings of the ASME 2000 International Mechanical Engineering Congress and Exposition. Mechanics in Biology. Orlando, Florida, USA. November 5–10, 2000. pp. 141–156. https://doi.org/10.1115/IMECE2000-1927
  5. Arrizabalaga J. H., Simmons A. D., Nollert M. U. Fabrication of an economical arduino-based uniaxial tensile tester. Journal of Chemical Education, 2017, vol. 94, iss. 4, pp. 530–533. https://doi.org/10.1021/acs.jchemed.6b00639
  6. Geasa M. M. Development of an Arduino based universal testing apparatus. Archives of Agriculture Sciences Journal, 2021, vol. 4, iss. 3, pp. 121–130. https://doi.org/10.21608/AASJ.2021.226282
  7. Bessonov L. V., Golyadkina A. A., Dmitriev P. O., Dol A. V., Zolotov V. S, Ivanov D. V., Kirillova I. V., Kossovich L. Y., Titova Y. I., Ulyanov V. Y., Kharlamov A. V. Constructing the dependence between the Young’s modulus value and the Hounsfield units of spongy tissue of human femoral heads. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 182–193. https://doi.org/10.18500/1816-9791-2021-21-2-182-193, EDN: SNBJNB
  8. Ramirez J., Isaza J., Mariaka I., Velez J. Analysis of bone demineralization due to the use of exoprosthesis by comparing Young’s Modulus of the femur in unilateral transfemoral amputees. Prosthetics and Orthotics International, 2011, vol. 35, iss. 4, pp. 459–466. https://doi.org/10.1177/0309364611420478
  9. Wintermark M., Jawadi S. S., Rapp J. H, Tihan T., Tong E., Glidden D. V., Abedin S., Schaeffer S., Acevedo-Bolton G., Boudignon B., Orwoll B., Pan X., Saloner D. High-resolution CT imaging of carotid artery atherosclerotic plaques. American Journal of Neuroradiology, 2008, vol. 29, iss. 5, pp. 875–882. https://doi.org/10.3174/ajnr.A0950
  10. Wissing T. B., Van der Heiden K., Serra S. M., Smits A. I. P. M., Bouten C. V. C., Gijsen F. J. H. Tissue-engineered collagenous fibrous cap models to systematically elucidate atherosclerotic plaque rupture. Scientific Reports, 2022, vol. 12, art. 5434. https://doi.org/10.1038/s41598-022-08425-4
  11. Yanev S., Zhelyazkova-Savova M., Chaldakov G. The fibrous cap: A promising target in the pharmacotherapy of atherosclerosis. Biomedical Reviews, 2019, vol. 30, pp. 136–141. https://doi.org/10.14748/bmr.v30.6394
  12. Endo K., Yamada S., Todoh M., Takahata M., Iwasaki N., Tadano S. Structural strength of cancellous specimens from bovine femur under cyclic compression. PeerJ, 2016, vol. 4, art. e1562. https://doi.org/10.7717/peerj.1562
  13. Barrett S. R. H., Sutcliffe M. P. F., Howarth S., Li Z.-Y., Gillard J. H. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. Journal of Biomechanics, 2009, vol. 42, iss. 11, pp. 1650–1655. https://doi.org/10.1016/j.jbiomech.2009.04.025
  14. Tracqui P., Broisat A., Toczek J., Mesnier N., Ohayon J., Riou L. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. Journal of Structural Biology, 2011, vol. 174, iss. 1, pp. 115–123. https://doi.org/10.1016/j.jsb.2011.01.010
  15. Matsumoto T., Sugita S., Yaguchi T. Biomechanics of blood vessels: Structure, mechanics, and adaptation. In: Niinomi M., Narushima T., Nakai M. (eds.) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol. 3. Springer, Berlin, Heidelberg, 2015, pp. 71–98. https://doi.org/10.1007/978-3-662-46836-4_4
  16. Kim Y.-H., Kim J.-E., Ito Y., Shih A. M., Brott B., Anayiotos A. Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Annals of Biomedical Engineering, 2008, vol. 36, pp. 1753–1763. https://doi.org/10.1007/s10439-008-9558-0
  17. Barrett H. E., Van der Heiden K., Farrell E., Gijsen F. J. H., Akyildiz A. C. Calcifications in atherosclerotic plaques and impact on plaque biomechanics. Journal of Biomechanics, 2019, vol. 87, pp. 1–12. https://doi.org/10.1016/j.jbiomech.2019.03.005
  18. Vahey J. W., Lewis J. L., Vanderby R. Jr. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. Journal of Biomechanics, 1987, vol. 20, iss. 1, pp. 29–33. https://doi.org/10.1016/0021-9290(87)90264-8