Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Baranov V. B. Gasdynamics and Magnetohydrodynamics of the Interplanetary and Interstellar Gas Interaction. Theory and Experiments. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2008, vol. 8, iss. 3, pp. 18-25. DOI: 10.18500/1816-9791-2008-8-3-18-25

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
16.06.2008
Full text:
(downloads: 58)
Language: 
Russian
Heading: 
UDC: 
533.6.011: 533.72: 523.2

Gasdynamics and Magnetohydrodynamics of the Interplanetary and Interstellar Gas Interaction. Theory and Experiments

Autors: 
Baranov V. B., Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Abstract: 

A problem of the interaction between interplanetary and interstellar gas flows is the problem of the interaction between the supersonic flow of the fully ionized hydrogen gas flow from a source (solar wind) and the supersonic translational flow of the interstellar gas which has neutral (Hatoms) and plasma (electrons and protons) components. Self-consistent, kinetic-continual model of this interaction, suggested in [8], is described in this paper. This model has the basic peculiarity connected with the mean free path of H atoms in a main process of the resonance charge exchange (charge exchange between H atoms and protons), namely, Knudsen number in this process Kn ∼ 1, i. e. hydrodynamic equations are not correct for describing H atoms motion. Euler equations with «sources» of the momentum and energy for the plasma component and the Boltzmann equation for neutral component are solved in the model [8]. Mathematical formulation of the problem considered and the basic results of numerical calculations are in details described. Some predictions of the model [8] were later confirmed by experimental data obtained onboard of spacecraft investigating outer regions of the solar system. For example, the «hydrogen wall», predicted in [7, 8], was discovered experimentally onboard of Hubble Space Telescope [11] and Voyagers 1 and 2 have crossed the solar wind termination shock in December 2004 (at the distance 94 AU) and in August 2007 (at the distance 84AU) respectively (see Fig. 2) and so on. Results of a development of the model in [8] taking into account effects of the solar cycles, anomalous cosmic rays, interstellar magnetic field and so on are also described.

Key words: 
References: 
  1. Баранов В.Б., Краснобаев К.В., Куликовский А.Г. Модель взаимодействия солнечного ветра с межзвездной средой // Докл. АН СССР. 1970. Т. 193, No 1. С. 41–44.
  2. Черный Г.Г. Течения газа с большой сверхзвуковой скоростью. М.: Физматгиз, 1959. 220 с.
  3. Баранов В.Б., Лебедев М.Г., Рудерман М.С. Структура области взаимодействия солнечного ветра с межзвездной средой и ее влияние на проникновение атомов H в солнечную систему // Astrophys. Space Sci. 1979. V. 66, No 2. P. 429–440.
  4. Lallement R., Bertin P. Nothern-hemisphere observations of nearly interstellar gas: possible detection of the local cloud // Astron. Astrophys. 1992. V. 266, No 1. P. 479–485.
  5. Баранов В.Б., Краснобаев К.В. Гидродинамическая теория космической плазмы. М.: Наука, 1977. 335 с.
  6. Baranov V.B. On the problem of fluid dynamics foundation for application in the space physics // Astrophs. Space Sci. 2000. V. 274, No 1–2. P. 3–16.
  7. Baranov V.B., Lebedev M.G., Malama Yu.G. The influence of the interface between heliosphere and the local interstellar medium on the penetration of H-atoms to the solar system // Astrophys. J. 1991. V. 375, No 1. P. 347–351.
  8. Baranov V.B., Malama Yu.G. Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem // J. Geophys. Res. 1993. V. 98, No A9. P. 15,157–15,163.
  9. Malama Yu.G. Monte Carlo simulation of neutral atom trajectories in the solar system // Astrophys. Space Sci. 1991. V. 176, No 1. P. 21–46.
  10. Burlaga L.F., Ness N.F., Acuna M.H., Lepping R.P., Connerney J.E.P., Stone E.S., McDonald F.B. Crossing the termination shock into the heliosheath: magnetic fields // Science. 2005. V. 309. P. 2027–2029.
  11. Linsky J.L. Wood B.E. The α-Centaury line of sight: D/H ratio, physical properties of local interstellar gas and measurements of heated hydrogen at heliospheric interface // Astrophys. J. 1996. V. 463, No 1. P. 254–270.
  12. Linsky J.L. GHRS observations of the LISM // Space Sci. Rev. 1996. V. 78. P. 157–164.
  13. Wood B.E., Linsky J.L., Zank G.P. Heliospheric, astrospheric and interstellar Ly-α absorption toward 36 Ophiuchi // Astrophys. J. 2000. V. 537, No 1. P. 304–311.
  14. Izmodenov V.V., Lallement R., Malama Yu.G. Heliospheric and astrospheric hydrogen absorption towards Sirius: No need for interstellar hot gas // Astron. Astrophys. 1999. V. 342, No 1. P. L13–L16.
  15. Izmodenov V.V., Malama Yu.G., Gloeckler G., Geiss J. Filtration of interstellar H, O, N atoms through the heliospheric interface: Inferences on local interstellar abundances of the elements // Astron. Astrophys. 2004. V. 414, No 3. P. L29–L32.
  16. Witte M. Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with Ulysses / GAS-instrument // Astron. Astrophys. 2004. V. 426, No 3. P. 835–844.
  17. Izmodenov V.V., Malama Yu.G., Ruderman M.S. Solar cycle influence on the interaction of the solar wind with the local interstellar cloud // Astron. Astrophys. 2005. V. 34, No 3. P. 1069–1080.
  18. Измоденов В.В., Алексашов Д.Б. Модель хвостовой области гелиосферного интерфейса // Письма в Астрон. журн. 2003. Т. 29, No 1. С. 69–75.
  19. Malama Yu.G., Izmodenov V.V., Chalov S.V. Modeling of the heliospheric interface: multi-componen nature of the heliospheric plasma // Astron. Astrophys. 2006. V. 445, No 2. P. 693–701.
  20. Myasnikov A.V., Alexashov D.B., Izmodenov V.V., Chalov S.V. Self-consistent model of the solar wind interaction with three-component circumsolar interstellar cloud: Mutual influence of the thermal plasma, galactic cosmic rays and H atoms // J. Geophys. Res. 2000. V.105, No A3. P. 5167–5177.
  21. Alexashov D.B., Chalov S.V., Myasnikov A.V., Izmodenov V.V., Kallenbach R. The dynamic role of anomalous cosmic rays in the outer heliosphere // Astron. Astrophys. 2004. V. 420, No 2. P. 729–736.
  22. Izmodenov V.V., Alexashov D.B., Myasnikov A.V. Direction of the interstellar H atom inflow in the heliosphere: Role of the interstellar magnetic field // Astron. Astrophys. 2005. V. 437, No 3. P. L35–L38.
  23. Lallement R., Quemerais E., Bertaux J.-L., Ferron S., Koutroumpa D., Pellinen R. Deflection of the interstellar neutral hydrogen flow across the heliospheric interface // Science. 2005. V. 307, No 5714. P. 1447–1449.