Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kolesnikova A. S., Prikhodchenko C. A. Influence of Doping by Oxygen Atoms of Porous Carbon Nanostructures on Values of Young’s Modulus. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 1, pp. 59-68. DOI: 10.18500/1816-9791-2019-19-1-59-68, EDN: LMCAIF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.02.2019
Full text:
(downloads: 198)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
501.1
EDN: 
LMCAIF

Influence of Doping by Oxygen Atoms of Porous Carbon Nanostructures on Values of Young’s Modulus

Автор:
Импортов Импорт Импортович
Autors: 
Kolesnikova Anna Sergeevna, Saratov State University
Prikhodchenko Christina A., Saratov State University
Abstract: 

Porous carbon structures are actively used in various fields of science and technology. The mechanical strength of porous carbon structures with a density of 1.4 g /cm3 with different pore sizes and different concentrations of oxygen atoms was investigated. Investigation of the mechanical properties of porous carbon nanostructures was carried out on three models with different sizes of nanopores (0.4–0.8 nm, 0.2–1.12 nm, 0.7–1.3 nm). The nature of the change in Young’s modulus of porous nanostructures is determined depending on the concentration and arrangement of oxygen atoms in nanopores.  

References: 
  1. Zhao Z., Wang E. F., Yan H., Kono Y., Wen B., Bai L., Shi F., Zhang J., KenneyBenson C., Park C., Wang Y., Shen G. Nanoarchitectured materials composed of fullerene like spheroids and disordered graphene layers with tunable mechanical properties // Nature Communications. 2015. Vol. 6, № 6212. P. 1–10. DOI: https://doi.org/10.1038/ncomms7212
  2. Bauer J., Schroer A., Schwaiger R., Kraft O. Approaching theoretical strength in glassy carbon nanolattices // Nat. Mater. 2016. Vol. 15. P. 438–443. DOI: https://doi.org//10.1038/NMAT4561 
  3. Kolesnikova A. S. Mechanical Properties of Sorbents Depending on Nanopore Sizes // Physics of the Solid State. 2017. Vol. 59, № 7. P. 1336–1339. DOI: https://doi.org/10.1134/S1063783417070113
  4. Manoharan M. P., Lee H., Rajagopalan R., Foley H. C., Haque M. A. Elastic Properties of 4–6 nm-thick Glassy Carbon Thin Films // Nanoscale Res Lett. 2010. Vol. 5. P. 14–19. DOI: https://doi.org//10.1007/s11671-009-9435-2
  5. Suarez-Martinez I., Marks N. A. Effect of microstructure on the thermal conductivity of disordered carbon // Applied Physics Letters. 2011. Vol. 99, iss. 3. P. 033101. DOI: https://doi.org/10.1063/1.3607872
  6. Yao M., Xiao J., Fan X., Liu R., Liu B. Transparent, superhard amorphous carbon phase from compressing glassy carbon // Applied Physics Letters. 2014. Vol. 104, iss. 2. P. 021916. DOI: https://doi.org/10.1063/1.4861929
  7. Glukhova O. E., Slepchenkov M. M. Electronic Properties of the Functionalized Porous Glass-Like Carbon // J. Phys. Chem. C. 2016. Vol. 120, № 31. P. 17753–17758. DOI: https://doi.org//10.1021/acs.jpcc.6b05058
  8. Liang H., Ma X., Yang Z., Wang P., Zhang X., Ren Z., Xuea M., Chen G. Emergence of superconductivity in doped glassy-carbon // Carbon. 2016. Vol. 99. P. 585–590. DOI: https://doi.org/10.1016/j.carbon.2015.12.046
  9. Feng S., Li W., Shi Q., Li Y., Chen J., Ling Y., Asiri A. M., Zhao D. Synthesis of NitrogenDoped Hollow Carbon Nanospheres for CO2 Capture. // Chem. Commun. 2014. Vol. 50. P. 329–331. DOI: https://doi.org/10.1039/C3CC46492J
  10. Bo X., Bai J., Ju J., Guo L. Highly dispersed Pt nanoparticles supported on poly(ionic liquids) derived hollow carbon spheres for methanol oxidation. // J. Power Sources. 2011. Vol. 196. P. 8360–8365. DOI: https://doi.org/10.1016/j.jpowsour.2011.06.068
  11. Qiao Z. A., Guo B., Binder A. J., Chen J., Veith G. M., Dai S. Controlled Synthesis of Mesoporous Carbon Nanostructures via a “Silica-Assisted” Strategy // Nano Lett. 2013. Vol. 13. P. 207–212. DOI: https://doi.org/10.1021/nl303889h
  12. Bushuev N. A., Glukhova O. E., Grigor’ev Y. A., Ivanov D. V., Kolesnikova A. S., Nikolaev A. A., Shalaev P. D., Shesterkin V. I. Emissivity of a multibeam electron gun with a glassy carbon field-emission cathode // Technical Physics. 2016. Vol. 61, № 2. P. 290–295. DOI: https://doi.org/10.1134/S1063784216020080
  13. White R. J., Tauer K., Antonietti M., Titirici M. M. Functional Hollow Carbon Nanospheres by Latex Templating // J. Am. Chem. Soc. 2010. Vol. 132. P. 17360–17363. DOI: https://doi.org//10.1021/ja107697s
  14. Chen A., Yu Y., Lv H., Wang Y., Shen S., Hu Y., Li B., Zhang Y., Zhang J. Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors // J. Mater. Chem. A. 2013. Vol. 1. P. 1045–1047. DOI: https://doi.org/10.1039/C2TA01013E
  15. Lu A.-H., Li W.-C., Hao G.-P., Spliethoff B., Bongard H.-J., Schaack B. B., Sch¨uth F. Easy synthesis of hollow polymer, carbon, and graphitized microspheres // Angew. Chem. Int. Ed. 2010. Vol. 49. P. 1615–1618. DOI: https://doi.org/10.1002/anie.200906445
  16. Gong K. P., Du F., Xia Z. H., Durstock M., Dai L. M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction // Science. 2009. Vol. 323. P. 760–764. DOI: https://doi.org//10.1126/science.1168049
  17. Tang J., Salunkhe R. R., Liu J., Torad N. L., Imura M., Furukawa S., Yamauchi Y. Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon // J. Am. Chem. Soc. 2015. Vol. 137. P. 1572– 1580. DOI: https://doi.org/10.1021/ja511539a
  18. Zhong M., Kim E. K., McGann J. P., Chun S.-E., Whitacre J. F., Jaroniec M., Matyjaszewski K., Kowalewski T. Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer // J. Am. Chem. Soc. 2012. Vol. 134. P. 14846–14857. DOI: https://doi.org/10.1021/ja304352n
  19. Kakinoki J. A model for the structure of ‘glassy carbon’ // Acta Cryst. 1965. Vol. 18. P. 578. DOI: https://doi.org/10.1107/S0365110X65001342
  20. Brenner D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. Vol. 42. P. 9458.
  21. Glukhova O. E., Kolesnikova A. S., Kossovich E. L., Zhnichkov R. Y. Super strong nanoindentors for biomedical applications based on bamboo-like nanotubes // Progress in Biomedical Optics and Imaging – Proceedings of SPIE 2012. 2012. Vol. 8233. P. 823311. DOI: https://doi.org/10.1117/12.907035
  22. Glukhova O. E., Kolesnikova A. S. Empirical modeling of longitudinal tension and compression of graphene nanoparticles and nanoribbons // Physics of the Solid State. 2011. Vol. 53, № 9. P. 1957–1962. DOI: https://doi.org/10.1134/S1063783411090137
  23. Glukhova O. E., Kolesnikova A. S. Mechanical and emission properties of thinnest stable bamboolike nanotubes // Journal of Physics: Conference Series. 2012. Vol. 393. P. 012027. DOI: https://doi.org/10.1088/1742-6596/393/1/012027
  24. Glukhova O. E., Saliy I. N., Zhnichkov R. Y., Khvatov I. A., Kolesnikova A. S., Slepchenkov M. M. Elastic properties of graphene-graphane nanoribbons // Journal of Physics : Conference Series. 2010. Vol. 248. P. 012004. DOI: https://doi.org//10.1088/1742-6596/248/1/012004
Received: 
17.09.2018
Accepted: 
18.12.2018
Published: 
28.02.2019
Short text (in English):
(downloads: 111)