Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Grebennikova I. V., Kremlev A. G. Iterative Procedure of Constructing Optimal Solving in the Minimax Problem of Control for Singularly Perturbed System with Delay with Geometric Constraints. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 272-280. DOI: 10.18500/1816-9791-2016-16-3-272-280, EDN: WMIIGD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.09.2016
Full text:
(downloads: 143)
Language: 
Russian
Heading: 
UDC: 
517.977
EDN: 
WMIIGD

Iterative Procedure of Constructing Optimal Solving in the Minimax Problem of Control for Singularly Perturbed System with Delay with Geometric Constraints

Autors: 
Grebennikova Irina Vladimirovna, Ural Federal University named after the First President of Russia B. N. Yeltsin
Kremlev Aleksandr Gurievich, Ural Federal University named after the First President of Russia B. N. Yeltsin
Abstract: 

The control problem for the singularly perturbed system with delay with indeterminate initial conditions and geometric constraints on the control resources according to the minimax criterion is considered. Iterative procedure of constructing control response that approximates the optimal solution with given accuracy with respect to a small positive parameter is proposed.

References: 
  1. Krasovskii N. N. Teorija upravlenija dvizheniem [The Theory of Motion Control]. Moscow, Nauka, 1968, 475 p. (in Russian).
  2. Kurzhanskij A. B. Upravlenie i nabljudenie v uslovijah neopredelennosti [Control and Observation under the Uncertainty Conditions]. Moscow, Nauka, 1977, 392 p. (in Russian).
  3. Kremlev A. G. Asymptotic properties of a set of trajectories of a singularly perturbed system in the optimal control problem. Autom. Remote Control, 1993, vol. 54, no. 9, pp. 1353–1367.
  4. Grebennikova I. V. Solution approximation in a minimax control problem for a singularly perturbed system with delay. Russian Math., 2011, vol. 55, no. 10, pp. 23–33. DOI: https://doi.org/10.3103/S1066369X11100045.
  5. Grebennikova I. V., Kremlev A. G. Approximation of control for singularly perturbed system with delay with geometric constraints. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 2, pp. 142–151 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-2-142-151.
  6. Rokafellar R. Vypuklyj analiz [Convex Analysis]. Moscow, Mir, 1973, 492 p. (in Russian).
  7. Krasovskii N. N. Nekotorye zadachi teorii ustojchivosti dvizhenija [Some Problems in the Theory of Stability of Motion]. Moscow, Fizmatgiz, 1959, 468 p. (in Russian).
  8. Natanson I. P. Teorija funkcij veshhestvennoj peremennoj [Theory of Functions of a Real Variable]. Moscow, Nauka, 1974, 468 p. (in Russian).
  9. Grebennikova I. V. On iterative method of constructing optimal control for singularly perturbed systems with delay. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2009, vol. 9, iss. 3, pp. 14–22 (in Russian).
  10. Kirillova F. M. Relative controllability of linear dynamic systems with delay. Doklady AN SSSR, 1967, vol. 174, no. 6, pp. 1260–1263 (in Russian).
Received: 
17.04.2016
Accepted: 
25.08.2016
Published: 
30.09.2016