Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Kim R. P., Korchagin S. A. Mathematical and computer simulation of the electrophysical properties of a multicellular structure exposed to nanosecond electrical pulses. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 259-266. DOI: 10.18500/1816-9791-2021-21-2-259-266

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 174)
Article type: 

Mathematical and computer simulation of the electrophysical properties of a multicellular structure exposed to nanosecond electrical pulses

Kim Roman P., Saratov State Technical University
Korchagin Sergey A., Financial University under the Government of the Russian Federation

The article presents mathematical and computer models which allow to study the electrophysical properties (permittivity, impedance) of a multicellular structure exposed to nanosecond electrical pulses. The paper proposes a simulation approach that includes complex use of the classical theory of describing the electrodynamic properties of dispersed systems and the effective medium theory. We describe cell geometry using Gielis equations, which allow us to take account of the irregular shapes of cell membranes. We carry out a computational experiment with cell models to study the frequency dependences of permittivity and impedance exposed to nanosecond electrical pulses. The article considers the influence of membrane porosity on cell conductivity and permittivity as well. We carry out computer simulation of the plasma membrane electroporation mechanism. The obtained results will help to understand better the fundamental processes in the cell membrane exposed to electrical pulses and can be used in various practical applications, such as targeted drug delivery, incorporation of DNA and RNA genes into bacterial and mammalian cells, as well as the selective destruction of cancer cells.

  1. Lv Y., Yao C., Rubinsky B. A. Conceivable mechanism responsible for the synergy of high and low voltage irreversible electroporation pulses. Annals of Biomedical Engineering, 2019, vol. 47, no. 7, pp. 1552–1563. https://doi.org/10.1007/s10439-019-02258-5
  2. Gupta R., Rai B. Electroporation of skin stratum corneum lipid bilayer and molecular mechanism of drug transport: A molecular dynamics study. Langmuir, 2018, vol. 34, no. 20, pp. 5860–5870. https://doi.org/10.1007/s10439-019-02258-5
  3. van Veldhuisen E., Vogel J. A., Klaessens J. H., Verdaasdonk R. M. Thermal Effects of Irreversible Electroporation. In: M. Meijerink, H. Scheffer, G. Narayanan, eds. Irreversible Electroporation in Clinical Practice. Springer, Cham, 2018, pp. 121–136. https://doi.org/10.1007/978-3-319-55113-5_9
  4. Yao C., Liu H., Zhao Y., Mi Y., Dong S., Lv Y. Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finiteelement model. IEEE Transactions on Plasma Science, 2017, vol. 45, iss. 5, pp. 889–900. https://doi.org/10.1109/TPS.2017.2681433
  5. Rolong A., Davalos R. V., Rubinsky B. History of Electroporation. In: Meijerink M., Scheffer H., Narayanan G., eds. Irreversible Electroporation in Clinical Practice. Springer, Cham, 2018, pp. 13–37. https://doi.org/10.1007/978-3-319-55113-5_2
  6. Royer H. D. Centenary Nobel prize in physiology or medicine for the cell cycle. Journal of Molecular Medicine, 2001, vol. 79, pp. 683–685. https://doi.org/10.1007/s00109-001- 0303-5
  7. Cao Y., Enbo Ma E., Cestellos-Blanco S., Zhang B., Qiu R., Su Y., Doudna J. A., Yang P. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proceedings of the National Academy of Sciences USA, 2019, vol. 116, no. 16, pp. 7899–7904. https://doi.org/10.1073/pnas.1818553116
  8. Korchagin S. A., Terin D. V. Research electrodynamic properties of layered composite the fractal structure. 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, 2016, pp. 1–4. https://doi.org/10.1109/APEDE.2016.7879012
  9. Kim R. P., Romanchuk S. P., Terin D. V., Korchagin S. A. The use of a genetic algorithm in modeling the electrophysical properties of a layered nanocomposite. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 2, pp. 217–225. https://doi.org/10.18500/1816-9791-2019-19-2-217-225
  10. Mescia L., Chiapperino M. A., Bia P., Lamacchia C. M., Gielis J., Caratelli D. Design of electroporation process in irregularly shaped multicellular systems. Electronics, 2019, vol. 8, no. 1, pp. 37. https://doi.org/10.3390/electronics8010037
  11. Sack M., Mueller G. Scaled design of PEF treatment reactors for electroporation-assisted extraction processes. Innovative Food Science and Emerging Technologies, 2016, vol. 37, pt. C, pp. 400–406. https://doi.org/10.1016/j.ifset.2016.09.005
  12. Terin D. V., Korchagin S. A., Romancuk S. P., Onosov I. A. Influence of the depth of fractal on the frequency dependence of inpedance in constructing models of composite materials. 2014 International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, 2014, pp. 258–259. https://doi.org/10.1109/APEDE.2014.6958756
  13. Romanchuk S. P., Terin D. V., Klinayev Yu. V., Katz A. M. Mathematical modelling of structures and interaction processes of electromagnetic radiation with core-shell nanoobjects. Vestnik Saratov State Technical University, 2011, vol. 4, iss. 2 (60), pp. 98–102 (in Russian).
  14. Warindi, Hadi S. P., Berahim H., Suharyanto. Impedance measurement system of a biological material undergoing pulsed electric field exposed. Procedia Engineering, 2017, vol. 170, pp. 410–415. https://doi.org/10.1016/j.proeng.2017.03.066