For citation:
Alimov A. R. Mazur Spaces and 4.3-intersection Property of (BM)-spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 2, pp. 133-137. DOI: 10.18500/1816-9791-2016-16-2-133-137, EDN: WCNQGP
Mazur Spaces and 4.3-intersection Property of (BM)-spaces
The paper puts forward some combinatorial and geometric properties of finite-dimensional (BM)-spaces. A remarkable property of such spaces is that in these spaces one succeeds in giving an answer to some long-standing problems of geometric approximation theory, and in particular, to the question on the existence of continuous ε-selections on suns (Kolmogorov sets) for all ε > 0. A finite-dimensional polyhedral (BM)-space is shown to be a Mazur space, satisfies the 4.3-intersection property, and its unit ball is proved to be a generating set (in the sense of Polovinkin, Balashov, and Ivanov).
- Brown A. L. Suns in normed linear spaces which are finite-dimensional // Math. Ann. 1987. Vol. 279. P. 87–101. DOI: https://doi.org/10.1007/BF01456192.
- Alimov A. R., Tsar’kov I. G. Connectedness and other geometric properties of suns and Chebyshev sets. Fund. prikl. matem., 2014, vol. 19, no. 4, pp. 21–91 (in Russian).
- Brown A. L. Suns in polyhedral spaces // Seminar of Math. Analysis. Proceedings / eds. D. G. Aґ lvarez, G. Lopez Acedo, R. V. Caro; Univ. Malaga and Seville (Spain), Sept. 2002 – Febr. 2003. Sevilla : Universidad de Sevilla, 2003. P. 139–146.
- Bednov B. B., Borodin P. A. Banach spaces that realize minimal fillings. Sb. Math., 2014, vol. 205, no. 4, pp. 3–20. DOI: https://doi.org/10.1070/SM2014v205n04ABEH004383
- Hansen A. B., Lima A. The structure of finite dimensional Banach spaces with the 3.2. intersection property // Acta Math. 1981. Vol. 146. P. 1–23. DOI: https://doi.org/10.1007/BF02392457.
- Boltyanskii V. G., Soltan P. S. Combinatorial geometry and convexity classes. Russian Math. Surveys, 1978, vol. 33, no. 1 (199), pp. 1–45. DOI: https://doi.org/10.1070/RM1978v033n01ABEH003730.
- Boltyanski V., Martini H., Soltan P. S. Excursions into combinatorial geometry. Berlin : Springer, 1997. 422 p. DOI: https://doi.org/10.1007/978-3-642-59237-9.
- Granero A. S., Moreno J. P., Phelps R. R. Mazur sets in normed spaces // Discrete Comput Geom. 2004. Vol. 31. P. 411–420. DOI: https://doi.org/10.1007/s00454-003-0808-5.
- Moreno J. P., Schneider R. Intersection properties of polyhedral norms // Adv. Geom. 2007. Vol. 7, № 3. P. 391–402. DOI: https://doi.org/10.1515/ADVGEOM.2007.025.
- Balashov M. V., Polovinkin E. S. M-strongly convex subsets and their generating sets. Sb. Math., 2000, vol. 191, no. 1, pp. 26–64. DOI: https://doi.org/10.1070/SM2000v191n01ABEH000447.
- Ivanov G. E. A criterion of smooth generating sets. Sb. Math., 2007, vol. 198, no. 3, pp. 343–368. DOI: https://doi.org/10.1070/SM2007v198n03ABEH003839.
- Balashov M. V., Ivanov G. E. Weakly convex and proximally smooth sets in Banach spaces. Izv. Math., 2009, vol. 73, no. 3, pp. 455–499. DOI: https://doi.org/10.1070/IM2009v073n03ABEH002454
- Schneider R. Convex bodies : The Brunn– Minkowski theory. Cambridge : Cambridge Univ. Press, 1993. DOI: https://doi.org/10.1017/CBO9780511526282.
- 1411 reads