Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Egorchev A. A., Chiсkrin D. E., Fakhrutdinov A. F., Sharipov M. R., Burnashev R. A. Methods for obtaining information for biomedical monitoring of the level of oxygenation and blood pressure using built-in sensors of smartphone technology. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 3, pp. 423-431. DOI: 10.18500/1816-9791-2024-24-3-423-431, EDN: SWTABZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.08.2024
Full text:
(downloads: 211)
Language: 
Russian
Heading: 
Article type: 
Review
UDC: 
004.42
EDN: 
SWTABZ

Methods for obtaining information for biomedical monitoring of the level of oxygenation and blood pressure using built-in sensors of smartphone technology

Autors: 
Egorchev Anton A., Kazan (Volga region) Federal University
Chiсkrin Dmitry E., Kazan (Volga region) Federal University
Fakhrutdinov Adel F., Kazan (Volga region) Federal University
Sharipov Marcel R., Kazan (Volga region) Federal University
Burnashev Rustam A., Kazan (Volga region) Federal University
Abstract: 

The article is devoted to the actual problem of non-invasive self-monitoring of oxygenation and blood pressure indicators by patients. The article provides an overview of the available promising approaches for monitoring the biomarkers under consideration. Also, it demonstrates the main problems associated with applying the approaches under consideration and those caused by the test sample itself.

Acknowledgments: 
This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (“Priority-2030”).
References: 
  1. Vildjiounaite E., Kallio J., Kyllonen V., Nieminen M., Maattanen I., Lindholm M., Mantyjarvi J., Gimel’farb G. Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing, 2018, vol. 22, pp. 671–688. https://doi.org/10.1007/s00779-017-1108-z
  2. Simantiraki O., Giannakakis G., Pampouchidou A., Tsiknakis M. Stress detection from speech using spectral slope measurements. In: Oliver N., Serino S., Matic A., Cipresso P., Filipovic N., Gavrilovska L. (eds) Pervasive Computing Paradigms for Mental Health (FABULOUS 2016, MindCare 2016, IIOT 2015). Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 207. Cham, Springer, 2018, pp. 41–50. https://doi.org/10.1007/978-3-319-74935-8_5
  3. Pili U. Measurement of breathing rate with a smartphone magnetometer: An engaging classroom activity in physics and biology. Physics Education, 2019, vol. 54, iss. 6, art. 063001. https://doi.org/10.1088/1361-6552/ab393f
  4. Xu C., Yang Y., Gao W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter, 2020, vol. 2, iss. 6, pp. 1414–1445. https://doi.org/10.1016/j.matt.2020.03.020
  5. Abay T., Kyriacou P. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Journal of Clinical Monitoring and Computing, 2018, vol. 32, pp. 447–455. https://doi.org/10.1007/s10877-017-0030-2
  6. Kanva A., Sharma C., Deb S. Determination of SpO2 and heart-rate using smartphone camera. Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC). Calcutta, India, 2014, pp. 237–241. https://doi.org/10.1109/CIEC.2014.6959086
  7. Scully C., Lee J., Meyer J., Gorbach A., Granquist-Fraser D., Mendelson Y., Chon K. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, iss. 2, pp. 303–306. https://doi.org/10.1109/TBME.2011.2163157
  8. Carni D. L., Grimaldi D., Sciammarella P. F., Lamonaca F., Spagnuolo V. Setting-up of PPG scaling factors for SpO2% evaluation by smartphone. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Benevento, Italy, 2016, pp. 1–5. https://doi.org/10.1109/MeMeA.2016.7533775
  9. Cheng Q., Juen J., Schatz B. Using mobile phones to simulate pulse oximeters: Gait analysis predicts oxygen saturation. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Bioligy and Health Informatics, 2014, iss. 1, pp. 331–340. https://doi.org/10.1145/2649387.2649403
  10. Chandrasekaran V., Dantu R., Jonnada S., Thiyagaraja S., Subbu K. Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 2013, vol. 60, iss. 4, pp. 1080–1089. https://doi.org/10.1109/TBME.2012.2211078
  11. Pelegris P., Banitsas K., Orbach T., Marias K. A novel method to detect Heart Beat Rate using a mobile phone. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, 2010, pp. 5488–5491. https://doi.org/10.1109/IEMBS.2010.5626580
  12. Morsi I., Gawad Y. Z. A. E. Measurement of blood pressure and heart beat based on sensors and microcontrollers. Applied Mechanics and Materials, 2012, vol. 249–250, pp. 193–201. https://doi.org/10.4028/www.scientific.net/AMM.249-250.193
  13. Xing X., Sun M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomedical Optics Express, 2016, vol. 7, iss. 8, pp. 3007–3020. https://doi.org/10.1364/BOE.7.003007
  14. Slapnicar G., Mlakar N., Lustrek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors, 2019, vol. 19, iss. 15, art. 3420. https://doi.org/10.3390/s19153420
Received: 
04.03.2023
Accepted: 
17.07.2023
Published: 
30.08.2024