For citation:
Kucherenko D. V. Modeling fluid injection into a porous spherical composite with anisotropy. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 2, pp. 203-213. DOI: 10.18500/1816-9791-2025-25-2-203-213, EDN: FADHUK
Modeling fluid injection into a porous spherical composite with anisotropy
Porous spherical composites are widely found both in natural objects and in technical applications. To describe the mechanical behavior of such structures, it is necessary to take into account the interaction of solid and fluid phases, since the fluid inside the porous body supports and redistributes part of the external load. This paper proposes a model of a spherical composite including a porous core and an elastic transversely isotropic shell. The developed model is applied for stress and strain analysis in different loading regimes, including the effect of external normal pressure and the injection of an additional volume of fluid, for example, when modeling intravitreal injections in biomedical research. The analysis has shown that when modeling intravitreal injections and describing the eyeball as a poroelastic composite, the drop in intraocular pressure with increasing degree of anisotropy is less significant than in the case of a model with an elastic shell under the influence of internal pressure alone. The increase in the degree of anisotropy is more significant for the pressure reduction in the porous core in the mode of external normal pressure application than the injection of additional fluid volume. The study also investigates the influence of the geometry and mechanical properties of the porous core on the variation of the shell thickness. The results obtained provide a comprehensive understanding of the stress distribution and fluid pressure, which allows to consider the influence of shell anisotropy, core porosity and their mechanical characteristics on the behavior of spherical composites.
- Bauer S. M., Zamuraev L. A., Kotlyar K. E. Model of the transversely isotropic spherical layer for estimation of intraocular pressure changes after intravitreal injections. Russian Journal of Biomechanics, 2006, vol. 10, iss. 2, pp. 43–49 (in Russian). EDN: JWTIDD
- Powers J. J., Wirth B. D. A review of TRISO fuel performance models. Journal of Nuclear Materials, 2010, vol. 405, iss. 1, pp. 74–82. https://doi.org/10.1016/j.jnucmat.2010.07.030
- Pasquini L., Molinari A., Fantazzini P., Dauphen Ya., Cuif J.-P., Levy O., Dubinsky Z., Caroselli E., Prada F., Goffredo S., Di Giosia M., Reggi M., Falini G. Isotropic microscale mechanical properties of coral skeletons. Journal of The Royal Society Interface, 2015, vol. 12, iss. 106, art. 20150168. https://doi.org/10.1098/rsif.2015.0168
- Wu Y.-C., Lee T.-M., Chiu K.-H., Shaw S.-Y., Yang C.-Y. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone–tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2009, vol. 20, pp. 1273–1280. https://doi.org/10.1007/s10856-009-3695-3
- Du R., Eychmuller A. Metal-based aerogels and porous composites as efficient catalysts: Synthesis and catalytic performance. Catalysts, 2023, vol. 13, iss. 11, art. 1451. https://doi.org/10.3390/catal13111451
- Hashin Z., Monteiro P. J. M. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cement and Concrete Research, 2002, vol. 32, iss. 8, pp. 1291–1300. https://doi.org/10.1016/S0008-8846(02)00792-5
- Cheng A. H.-D. Poroelasticity. Theory and Applications of Transport in Porous Media, vol. 27. Switzerland, Springer, 2016. 877 p. https://doi.org/10.1007/978-3-319-25202-5
- Maslov L. B. Konechno-elementnye porouprugie modeli v biomekhanike [Finite-element poroelastic models in biomechanics]. St. Petersburg, Lan’, 2013. 236 p. (in Russian).
- Coudrillier B., Tian J., Alexander S., Myers K. M., Quigley H. A., Nguyen T. D. Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera. PloS One, 2015, vol. 10, iss. 7, art. e0131396. https://doi.org/10.1371/journal.pone.0131396
- Meek K. M. The cornea and sclera. In: Fratzl P. (ed.) Collagen: Structure and Mechanics. Boston, MA, Springer US, 2008, pp. 359–396. https://doi.org/10.1007/978-0-387-73906-9_13
- Bonfiglio A., Repetto R., Siggers J. H., Stocchino A. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery. Physics in Medicine & Biology, 2013, vol. 58, iss. 6, art. 1969. https://doi.org/10.1088/0031-9155/58/6/1969
- Ruffini A., Casalucci A., Cara C., Ethier C. R., Repetto R. Drug distribution after intravitreal injection: A mathematical model. Investigative Ophthalmology & Visual Science, 2024, vol. 65, iss. 4, art. 9. https://doi.org/10.1167/iovs.65.4.9
- Avery R. L., Pieramici D. J., Rabena M. D., Castellarin A. A., Nasir M. A., Giust M. J. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology, 2006, vol. 113, iss. 3, pp. 363–372. https://doi.org/10.1016/j.ophtha.2005.11.019
- Doshi R. R., Bakri S. J., Fung A. E. Intravitreal injection technique. Seminars in Ophthalmology, 2011, vol. 26, iss. 3, pp. 104–113. https://doi.org/10.3109/08820538.2010.541318
- Nagel E., Vilser W., Lanzl I. M. Retinal vessel reaction to short-term IOP elevation in ocular hypertensive and glaucoma patients. European Journal of Ophthalmology, 2001, vol. 11, iss. 4, pp. 338–344. https://doi.org/10.1177/112067210101100404
- Bauer S. M., Venatovskaya L. A., Voronkova E. B. Models of solid mechanics in the problems of ophthalmology. Vestnik of the St. Petersburg University: Mathematics, 2023, vol. 56, iss. 4, pp. 493–511. https://doi.org/10.1134/s1063454123040039, EDN: KFETGL
- Iomdina E. N., Poloz M. V. Biomechanical model of the human eye: Description and verification. Mathematical Biology and Bioinformatics, 2014, vol. 9, iss. 1, pp. 286–295 (in Russian). https://doi.org/10.17537/2014.9.286, EDN: SIHWUT
- Bauer S. M., Venatovskaya L. A., Voronkova E. B., Smirnov A. L. The three-dimensional problem of the axisymmetric deformation of an orthotropic spherical layer. Vestnik of the St. Petersburg University: Mathematics, 2016, vol. 49, iss. 3, pp. 277–283. https://doi.org/10.3103/S1063454116030043, EDN: XFPPKB
- Bauer S. M., Voronkova E. B. Nonclassical shell theories in ocular biomechanics. Advanced Structured Materials, 2015, vol. 45, pp. 81–97. https://doi.org/10.1007/978-3-319-02535-3_4, EDN: UEMWQF
- Bekerman I., Gottlieb P., Vaiman M. Variations in eyeball diameters of the healthy adults. Journal of Ophthalmology, 2014, vol. 2014, art. 503645. https://doi.org/10.1155/2014/503645
- Boote C., Sigal I. A., Grytz R., Hua Y., Nguyen T. D., Girard M. J. A. Scleral structure and biomechanics. Progress in Retinal and Eye Research, 2020, vol. 74, art. 100773. https://doi.org/10.1016/j.preteyeres.2019.100773
- Iomdina E. N. Mechanical properties of the human eye tissues. In: Tsaturyan A. K., Stein A. A. Biomechanics: Progress and Perspectives. Modern Problems of Biomechanics. Vol. 11. Moscow, Moscow University Press, 2006, pp. 183–200 (in Russian).
- Iomdina E. N., Bauer S. M., Kotlyar K. E. Biomekhanika glaza: teoreticheskie aspekty i klinicheskie prilozheniya [Biomechanics of the eye: Theoretical aspects and clinical applications]. Moscow, Real Time, 2015. 208 p. (in Russian).
- Zhang Y., Li Z., Liu L., Han X., Zhao X., Mu G. Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera. BioMed Research International, 2014, vol. 2014, art. 194204. https://doi.org/10.1155/2014/194204
- Swindle K. E., Hamilton P. D., Ravi N. In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. Journal of Biomedical Materials Research Part A, 2008, vol. 87A, iss. 3, pp. 656–665. https://doi.org/10.1002/jbm.a.31769
- 797 reads