Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Nedorezov P. F., Romakina О. М. Numeric Investigation of a Curve Piecewise-Homogeneous Rectangular Plate from an Isotropic Material. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2008, vol. 8, iss. 1, pp. 43-50. DOI: 10.18500/1816-9791-2008-8-1-43-50

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
03.03.2008
Full text:
(downloads: 143)
Language: 
Russian
Heading: 
UDC: 
539.3

Numeric Investigation of a Curve Piecewise-Homogeneous Rectangular Plate from an Isotropic Material

Autors: 
Nedorezov Petr Feodosievich, Saratov State University
Romakina О. М., Saratov State University
Abstract: 

In this paper we consider the problem of a curve piecewise-homogeneous rectangular plate from an isotropic material. There are two group of condition on the line of a contact: geometric conditions,describing the continuity and smoothness of midsurfase of composite plate and force conditions, which supply the equality of bending moments and generalized cutting forces in the left and in the right parts of the plate. To find a solution we suggest a modified spline-collocationmethod, according to which the nondimensional deflection of the different part of plate may be presented as a linear combination of B-splines of fifth power. These combination are selected so, that the condition on the vertical side of the plate and the condition on the contact line are fulfilled. Different types of boundary problems are presented, which are solved numerically by the method of discrete ortogonalization of Godunov.

Key words: 
References: 
  1. Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки. М.: Наука, 1975. 575 с.
  2. Недорезов П.Ф., Шевцова Ю.В., Ромакина О.М. Модифицированный метод сплайн-коллокации в задачах изгиба прямоугольных пластинок // Математическое моделирование и краевые задачи: Тр. Второй Всерос. науч. конф. Самара: Самарск. техн. ун-та, 2005. Ч.1.С. 203–209.
  3. Завьялов Ю.С., Квасов Ю.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980. 352 с.