For citation:
Dudov S. I., Osipcev M. A. On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 3, pp. 267-272. DOI: 10.18500/1816-9791-2014-14-3-267-272, EDN: SMSJUH
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
10.09.2014
Full text:
(downloads: 213)
Language:
Russian
Heading:
UDC:
519.853
EDN:
SMSJUH
On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius
Autors:
Dudov Sergey Ivanovitch, Saratov State University
Osipcev Mikhail Anatolievich, Saratov State University
Abstract:
In this paper, we consider the problem of the best approximation of a compact body by a fixed radius ball with respect to an arbitrary norm in the Hausdorff metric. This problem is reduced to a linear programming problem in the case, when compact body and ball of the norm are polytops.
References:
- Nilol’skii M. S., Silin D. B. On the best approximation of a convex compact set by elements of addial. Proc. Steklov Inst. Math., 1995, vol. 211, pp. 306–321.
- Dudov S. I., Zlatorunskaya I. V. Best approximation of compact set by a ball in an arbitrary norm. Sb. Math., 2000, vol. 191, no. 10, pp. 1433–1458. DOI: http:// dx.doi.org/10.1070/SM2000v191n10ABEH000513.
- Dudov S. I. Relations between several problems of estimating convex compacta by balls. Sb. Math., 2007, vol. 198, no. 1, pp. 43–58. DOI: http://dx.doi.org/ 10.1070/SM2007v198n01ABEH003828.
- Dudov S. I., Meshcheryakova E. A. Method for finding an approximate solution of the asphericity problem for a convex body. Comp. Math. and Math. Physics, 2013, vol. 53, no. 10, pp. 1483–1493. DOI: 10.1134/S0965542513100059.
- Pschemichnyi B. N. Vypuklyj analiz i jekstremal’nye zadachi [Convex Analysis and Extremal Problems]. Moscow, Nauka, 1980 (in Russian).
- Dem’yanov V. F., Vasil’ev L. V. Nondifferetiable optimization. New York, Optimization software, Inc., Publications Division, 1985.
- Dudov S. I. Subdifferentiability and superdifferentiability of distance functions. Math. Notes, 1997, vol. 61, no. 4, pp. 440–450. DOI: 10.1007/BF02354988.
- Hiriart-Urruty J. B. Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Research, 1979, vol. 4, no. 1, pp. 79–97.
- Vasil’ev F. P. Metody optimizacii [Methods of Optimization]. Moscow, MCSMO, 2011 (in Russian).
- Dudov S. I., Zlatorunskaya I. V. Best approximation of compact set by a ball in an arbitrary norm. Adv. Math. Res., 2003, vol. 2, pp. 81–114.
- Zuhovickij S. I., Avdeeva L. I. Linejnoe i vypukloe programmirovanie [Linear and convex programming]. Moscow, Nauka, 1964 (in Russian).
- Bronstein E. M. Approximation of convex sets by polytopes. J. of Math. Sciences, 2008, vol. 153, no. 6, pp. 727–762. DOI: 10.1007/s10958-008-9144-x.
Received:
17.03.2014
Accepted:
25.07.2014
Published:
10.09.2014
- 1140 reads