For citation:
Novikov V. V. On Birkhoff Interpolation of Functions of Ordered Λ-bounded Variation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 1, pp. 81-83. DOI: 10.18500/1816-9791-2013-13-1-2-81-83, EDN: SMXXUN
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
27.02.2013
Full text:
(downloads: 280)
Language:
Russian
Heading:
UDC:
517.51
EDN:
SMXXUN
On Birkhoff Interpolation of Functions of Ordered Λ-bounded Variation
Autors:
Novikov Vladimir Vasil’evich, Saratov State University
Abstract:
В терминах обобщенной упорядоченной Λ-вариации получено достаточное условие равномерной сходимости на всей числовой прямой интерполяционного процесса Лагранжаи(0,2,3)-интерполяционного процесса Биркгофа.
Key words:
References:
- Waterman D. On convergence of Fourier Series of functions of generalized bounded variation // Studia Math. 1972. Vol. 44. P. 107–117.
- Waterman D. On Λ-bounded variation // Studia Math. 1976. Vol. 57. P. 33–45.
- Waterman D. Λ-bounded variation: recent results and unsolved problems // Real Anal. Exchange. 1978–1979. Vol.
- P. 69–75. 4. Waterman D. Fourier series of functions of Λ-bounded variation // Proc. Amer. Math. Soc. 1979. Vol. 74. P. 119– 123.
- Belna C. L. On ordered harmonic bounded variation // Proc. Amer. Math. Soc. 1980. Vol. 80. P. 441–444.
- Prus-Wisniowski F. On ordered Λ-bounded variation // Proc. Amer. Math. Soc. 1990. Vol. 109. P. 375–383.
- Waterman D. On the note of C. L. Belna // Proc. Amer. Math. Soc. 1980. Vol. 109. P. 375–383.
- Kvernadze G. Uniform Convergence of Lagrange Interpolation Based on the Jacobi Nodes // J. Approx. Theory. 1996. Vol. 87. P. 179–193.
- Lorentz G. G., Jetter K., Riemenshcneider S. D. Birkhoff interpolation. Reading, Massachusetts : AddisonWesley, 1983. 237 p.
- Sharma A., Varma A. K. Trigonometric interpolation (0,2,3) case // Ann. Polon. Math. 1968. Vol. 21. P. 51–58.
- Привалов А. А. О равномерной сходимости интерполяционных процессов Лагранжа // Мат. заметки. 1986. Т. 39, № 2. С. 228–243. [Privalov A. A. Uniform convergence of Lagrange interpolation processes // Math. Notes. 1986. Vol. 39, № 2. P. 124-–133.]
- Varma A. K.,Vertesi P. Equiconvergence of Some Lacunary Trigonometric Interpolation Polynomials // J. Approx. Theory. 1987. Vol. 50. P. 185–191.
Received:
07.08.2012
Accepted:
21.01.2013
Published:
27.02.2013
- 1011 reads