Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Shakirov I. A. On a Limit Value of a Remainder of the Lagrange Constant Corresponding to the Lagrange Trigonometrical Polynomial. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 302-310. DOI: 10.18500/1816-9791-2016-16-3-302-310, EDN: WMIIHR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.09.2016
Full text:
(downloads: 153)
Language: 
Russian
Heading: 
UDC: 
591.65
EDN: 
WMIIHR

On a Limit Value of a Remainder of the Lagrange Constant Corresponding to the Lagrange Trigonometrical Polynomial

Autors: 
Shakirov Iskhander Asgatovich, Naberezhnye Chelny Institute of Social Pedagogical Technologies and Resources
Abstract: 

The behavior of Lebesgue constant of a trigonometrical Lagrange polynomial interpolating the periodic function in an odd number of clusters is studied. The limit value of the remainder in the known asymptotic formula for this constant is found. A special representation of a remainder allowed us to establish its strict decreasing. On this basis, for a Lebesgue constant, a non-improvable uniform bilateral logarithmic function estimate is received. The extremum problems related to the best approximation of a constant of Lebesgue are solved: quite particular elements of the best approximation and the value of the best approximation are specified. 

References: 
  1. Goncharov V. L. Interpolation theory and approximations of functions. Moscow, Gostekhizdat, 1954, 328 p. (in Russian)
  2. Turetskii A. Kh. Teoriia interpolirovaniia v zadachakh [Theory of interpolation in problems]. Minsk, Vysheishaia shkola, 1968, 320 p. (in Russian).
  3. Privalov A. A. Teoriya interpolirovaniya funktsiy. Kniga 1, 2 [Theory of interpolation of functions. Book 1, 2]. Saratov, Saratov Univ. Press,1990. Book 1 : 230 p.; Book 2 : pp. 231–424 (in Russian).
  4. Dzyadyk V. K. Approksimatsionnye metody resheniya differentsial'nykh i integral'nykh uravneni' [Approximation methods for solving differential and integral equations]. Kiev, Naukova Dumka, 1988, 304 p. (in Russian).
  5. Szabados J., Vertesi P. Interpolation of Functions. Singapore, World Scientific, 1990, 305 p.
  6. Rivlin T. J. The Lebesgue constants for polynomial interpolation. Functional Analysis and its Application, Int. Conf., Madras, 1973 (eds. H. G. Gamier et al.), Berlin, Springer-Verlag, 1974, pp. 422–437.
  7. Brutman L. Lebesgue functions for polynomial interpolation — a survey. The heritage of P. L. Chebyshev : a Festschrift in honor of the 70th birthday of T. J. Rivlin. Ann. Numer. Math., 1997, vol. 4, no. 1–4, pp. 111–127.
  8. Vertesi P. On the Lebesgue function and Lebesgue constant : a tribute to Paul Erdos. Paul Erdos and ¨ his mathematics, I (Budapest, 1999), Bolyai Soc. Math. Stud., vol. 11, Budapest, Janos Bolyai Math. Soc., 2002, pp. 705–728.
  9. Simon J. S. Lebesgue constants in polynomial interpolation. Annal. Math. et Inf., 2006, vol. 33, pp. 109–123.
  10. Shakirov I. A. Influence of the choice of Lagrange interpolation nodes on the exact and approximate values of the Lebesgue constants. Siberian Math. J., 2014, vol. 55, iss. 6, pp. 1144–1160. DOI: https://doi.org/10.1134/S0037446614060184.
  11. Shakirov I. A. O znachenii neopredelennoi velichiny v asimptoticheskoi formule dlia konstanty Lebega [About the value of uncertain quantities in the asymptotic formula for the Lebesgue constants]. Sovremennye problemy teorii funktsii i ikh prilozheniia : materialy 18-i mezhdunar. Sarat. zimnei shkoly [Modern problems of function theory and their applications : Proc. 18th Intern. Sarat. Winter School]. Saratov, OOO Izd-vo "Nauchnaia kniga", 2016, pp. 322–326.
  12. Zygmund A. Trigonometric series: Vol. I, II. Second edition, reprinted with corrections and some additions. London ; New York, Cambridge Univ. Press, 1968, vol. I : 383 p.; vol. II : 364 p. (two volumes bound as one) (Russ. ed. : Zygmund A. Trigonometricheskie riady. Tom 1. Moscow, Mir, 1965, 616 p.).
  13. Korneichuk N. P. Ekstremal’nye zadachi teorii priblizheniya [Extremal problems of approximation theory]. Moscow, Nauka, 1976, 320 p. (in Russian).
Received: 
14.04.2016
Accepted: 
29.08.2016
Published: 
30.09.2016