Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Polovinkin E. S. On Relationship between Derivative of Multifunction and Its Support Function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 1, pp. 13-21. DOI: 10.18500/1816-9791-2013-13-1-1-13-21, EDN: SMXXFN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 172)

On Relationship between Derivative of Multifunction and Its Support Function

Polovinkin Evgeny Sergeevich, Moscow Institute of Physics and Technology (State University)

We obtain sufficient conditions under which the support function of the derivative of a set-valued mapping coincides with the derivative of the support function of a set-valued mapping in some sence. The example showing the difference between these concepts and the example of a Lipschitz set-valued mapping whose support function at any point does not have the mixed derivatives are obtained.

  1. Aubin J.-P. Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions and differential inclusions // Advances in Math. Suppl. Studies. 1981. Vol. 7A. P. 160–272.
  2. Половинкин Е. С. Теория многозначных отображений. М. : Изд-во МФТИ, 1983. 108 c. [Polovinkin E. S. The theory of multi-valued mappings. Moscow : Moscow Institute of Physics and Technology, 1983. 108 p.]
  3. Половинкин Е. С., Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. М. : Физматлит, 2007. 440 c. [Polovinkin E. S., Balashov M. V. Elements of convex and strongly convex analysis. Moscow: Fizmatlit, 2007. 440 p.]
  4. Рокафеллар Р. Выпуклый анализ. М. : Мир, 1973. 472 c. [Rockafellar R. T. Convex analysis. Princeton, New Jersey : Princeton university press, 1970. 472 p.]
  5. Пшеничный Б. Н. Выпуклый анализ и экстремальные задачи. М. : Наука, 1980. 320 c. [Pshenichny B. N. Convex analysis and extremal problems. Moscow : Nauka, 1980. 320 p.]
  6. Aubin J.-P., Frankovska H. Set-Valued Analisys. Boston; Basel; Berlin : Birkhӓuser, 1990. 464 p.
  7. Aubin J.-P. Lipschitz behavior of solutions to convex minimization problems // Math. of Oper. Res. 1984. Vol. 9. P. 87–111.
  8. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М. : Наука, 1975. 496 c. [Kolmogorov A. N., Fomin S. V. Elements of the theory of functions and functional analysis. Moscow : Nauka, 1975. 496 p.]