For citation:
Muslov S. A., Sukhochev P. Y. On the question of the physical interpretation of material constants of hyperelastic models. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 3, pp. 380-390. DOI: 10.18500/1816-9791-2025-25-3-380-390, EDN: JCMIBQ
On the question of the physical interpretation of material constants of hyperelastic models
There is a known demand for hyperelastic deformation models in the design of technical products using elastomeric materials (rubber and rubber-like polyurethanes, silicones, and TPE thermoplastic elastomers), which realize high (up to 500%) reversible deformations and damping capacity under cyclic and impact loading. Such products include car tires, shock absorbers, flexible gears, ''compliance mechanisms'' in robotics, etc. No less relevant and at the same time socially significant is the application of the theory of hyperelasticity for the purpose of developing implantable materials and devices for general, cardiac, and plastic surgery, including the replacement of soft biological tissues (skin, muscles, ligaments, etc.) with their functional analogues in the form of biocompatible synthetic materials. One of the unsolved problems in the mechanics of hyperelastic models remains the physical interpretation of their material constants. In this report, the material constants of the models are compared with the elastic moduli of the materials ($E_{0}$ and $G_{0}$) in the unstrained state. It is verified that for the neo-Hookean model, the relation $\mu=E_{0}/6$ holds, for the 2-parameter Mooney – Rivlin model $C_{01}+C_{10}=E_{0}/6$. It has been established that the same formula is valid for the 3-, 5-, and 9-parameter Mooney – Rivlin models and the nth order polynomial model. For the Ogden model $3\mu\alpha=2E_{0}$, Yeoh $C_{1}=E_{0}/6$, Veronda – Westmann $6(C_{1}C_{2}+C_{3})=E_{0}$. Material constants are indicators of the mechanical stability of hyperelastic models due to the Hill – Drucker condition. Using the example of a biomaterial, the results obtained using the derived formulas are compared with each other and with the indicators of elastic models: linear, bilinear, and exponential. A number of models characterize cases of small deformations unsatisfactorily.
- Green A., Adkins J. Large elastic deformations and non-linear continuum mechanics. Clarendon Press, 1960. 348 p. (Russ. ed.: Moscow, Mir, 1965. 455 p.).
- Shmurak M. I., Kuchumov A. G., Voronova N. O. Hyperelastic models analysis for description of soft human tissues behavior. Master‘s Journal, 2017, iss. 1, pp. 230–243 (in Russian). EDN: YUOPFB
- Melly S. K., Liu L., Liu Y., Leng J. A review on material models for isotropic hyperelasticity. International Journal of Mechanical System Dynamics, 2021, vol. 1, iss. 1, pp. 71–88. DOI: https://doi.org/10.1002/msd2.12013
- Ogden R. W., Saccomandi G., Sgura I. Fitting hyperelastic models to experimental data. Computational Mechanics, 2004, vol. 34, pp. 484–502. DOI: https://doi.org/10.1007/s00466-004-0593-y
- Zhao Z., Mu X., Du F. Modeling and verification of a new hyperelastic model for rubber-like materials. Mathematical Problems in Engineering, 2019, vol. 2019, art. 2832059. DOI: https://doi.org/10.1155/2019/2832059
- Khaniki H. B., Ghayesh M. H., Chin R., Amabili M. A review on the nonlinear dynamics of hyperelastic structures. Nonlinear Dynamics, 2022, vol. 110, pp. 963–994. DOI: https://doi.org/10.1007/s11071-022-07700-3
- Payan Y., Ohayon J. Preface. In: Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling. Elsevier, 2017, pp. xxv–xxvi. DOI: https://doi.org/10.1016/b978-0-12-804009-6.10000-8
- Hackett R. M. Hyperelasticity primer. Cham, Springer, 2018. 186 p. DOI: https://doi.org/10.1007/978-3-319-73201-5
- Kumar N., Rao V. V. Hyperelastic Mooney – Rivlin model: Determination and physical interpretation of material constants. MIT International Journal of Mechanical Engineering, 2016, vol. 6, iss. 1, pp. 43–46.
- Hill R. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1958, vol. 6, iss. 3, pp. 236–249. DOI: https://doi.org/10.1016/0022-5096(58)90029-2
- Drucker D. C. A definition of a stable inelastic material. Journal of Applied Mechanics, 1959, vol. 26, iss. 1, pp. 101–106. DOI: https://doi.org/10.1115/1.4011929
- Zeng Y. J., Sun X. P., Yang J., Wu W., Xu X., Yan Y. P. Mechanical properties of nasal fascia and periosteum. Clinical Biomechanics, 2003, vol. 18, iss. 8, pp. 760–764. DOI: https://doi.org/10.1016/S0268-0033(03)00136-0
- Ivanov D. V., Fomkina O. A. Determination of constants for neo-Hooke and Mooney – Rivlin models based on uniaxial tension experiments. Mathematics. Mechanics, 2008, iss. 10, pp. 114–117 (in Russian). EDN: UIRZIV
- Mooney M. A theory of large elastic deformations. Journal of Applied Physics, 1940, vol. 11, iss. 9, pp. 582–592. DOI: https://doi.org/10.1063/1.1712836
- Rivlin R. S. Large elastic deformations of isotropic materials. In: Barenblatt G. I., Joseph D. D. (eds.) Collected Papers of R. S. Rivlin. New York, NY, Springer, 1997, pp. 120–142. DOI: https://doi.org/10.1007/978-1-4612-2416-7_10
- Ogden R. W., Saccomandi G., Sgura I. Fitting hyperelastic models to experimental data. Computational Mechanics, 2004, vol. 34, iss. 6, pp. 484–502. DOI: https://doi.org/10.1007/s00466-004-0593-y
- Yeoh O. H. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993, vol. 66, iss. 5, pp. 754–771. DOI: https://doi.org/10.5254/1.3538343
- Rivlin R. S. Some applications of elasticity theory to rubber engineering. In: Barenblatt G. I., Joseph D. D. (eds.) Collected Papers of R. S. Rivlin. New York, NY, Springer, 1997, pp. 9–16. DOI: https://doi.org/10.1007/978-1-4612-2416-7_2
- Veronda D. R., Westmann R. A. Mechanical characterizations of skin-finite deformations. Journal of Biomechanics, 1970, vol. 3, iss. 1, pp. 111–124. DOI: https://doi.org/10.1016/0021-9290(70)90055-2
- Muslov S. A., Pertsov S. S., Arutyunov S. D. Fiziko-mekhanicheskie svoystva biologicheskikh tkaney [Physical and mechanical properties of biological tissues]. Ed. by O. O. Yanushevich. Moscow, Prakticheskaya meditsina, 2023. 456 p. (in Russian).
- Muslov S. A., Pertsov S. S., Chijhmakov E. A., Astashina N. B., Nikitin V. N., Arutyunov S. D. Elastic linear, bilinear, nonlinear exponential and hyperelastic skin models. Russian Journal of Biomechanics, 2023, vol. 27, iss. 3, pp. 89–103 (in Russian). DOI: https://doi.org/10.15593/RZhBiomeh/2023.3.07, EDN: QKAJEL
- 369 reads