Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kovalev V. A., Radayev Y. N. On Wavenumbers of Plane Harmonic Type III Thermoelastic Waves. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2010, vol. 10, iss. 3, pp. 46-53. DOI: 10.18500/1816-9791-2010-10-3-46-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.07.2010
Full text:
(downloads: 191)
Language: 
Russian
Heading: 
UDC: 
539.374

On Wavenumbers of Plane Harmonic Type III Thermoelastic Waves

Autors: 
Kovalev Vladimir Aleksandrovich, Moscow City Government University of Management Moscow, Russia
Radayev Yuri Nickolaevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Abstract: 

The present study is devoted to propagation of plane harmonic GNIII thermoelastic waves by the coupled system of linear equations of motion and heat transport based on the Green & Naghdi theory of thermoelasticity. Analytical findings and exact solutions are primarily related to complex wavenumbers, phase velocities and attenuation coefficients of the plane GNIII-thermoelastic waves. Complete analysis of all analytical branches of the wavenumbers is given. Constitutive inequlities and frequency restrictions which provide a normal behaviour of the plane GNIII-thermoelastic waves are obtained. Limiting cases, including those corresponding to GNI/CTE (the classical theory) and GNII (hyperbolic, thermal energy conserving theory) thermoelasticity, are noted. The paper presents an in-depth analysis of plane thermoelastic waves in the context of GNI,II,III.  

References: 
  1. Green, A.E. On undamped heat waves in an elastic solid / A.E. Green, P.M. Naghdi // J. Therm. Stress. – 1992. – V. 15. – P. 253–264.
  2. Green, A.E. Thermoelasticity without energy dissipation / A.E. Green, P.M. Naghdi // J. Elasticity. – 1993. – V. 31. – P. 189–208.
  3. Kalpakides,V.K. Canonical formulation and conservation laws of thermoelasticity without dissipation / V.K.Kalpakides, G.A. Maugin // Reports in Mathematical Physics. – 2004. – V. 53. – P. 371–391.
  4. Ковалев, В.А. Элементы теории поля: вариационные симметрии и геометрические инварианты / В.А. Ковалев, Ю.Н. Радаев. – М.: Физматлит, 2009. – 156 с.
  5. Радаев, Ю.Н. Гармонические связанные CTE-термоупругие волны в свободном цилиндрическом волноводе / Ю.Н. Радаев, Д.А. Семенов // Вестн. Самар. гос.
  6. ун-та. Естественнонауч. сер. – 2008. – №8/1(67). – С. 411–459.
  7. Ковалев,В.А. Связанные динамические задачи гиперболической термоупругости/ В.А.Ковалев, Ю.Н.Радаев, Д.А. Семенов // III сессия Научного совета РАН по механике деформируемого твердого тела: тез. докл. Всерос. конф./ под ред. проф. Л.Ю.Коссовича. – Саратов: Изд-во Сарат. ун-та, 2009. – С. 25.
  8. Ковалев,В.А. Связанные динамические задачи гиперболической термоупругости/ В.А.Ковалев, Ю.Н.Радаев, Д.А. Семенов // Изв. Сарат. ун-та. Нов. сер. – 2009. – Т. 10. – Сер. Математика. Механика. Информатика, вып. 4, ч. 2. – С. 94–128.
  9. Бреховских, Л.М. Введение в механику сплошных сред (в приложении к теории волн) / Л.М. Бреховских, В.В. Гончаров. – М.: Наука, 1982. – 336 с.