Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Volosivets S. S. On Weighted Analogs of Wiener’s and Levy’s Theorems for Fourier – Vilenkin Series. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 3, pp. 3-7. DOI: 10.18500/1816-9791-2011-11-3-1-3-7

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.07.2011
Full text:
(downloads: 191)
Language: 
Russian
Heading: 
UDC: 
517.518

On Weighted Analogs of Wiener’s and Levy’s Theorems for Fourier – Vilenkin Series

Autors: 
Volosivets Sergei Sergeevich, Saratov State University
Abstract: 

In this paper we find the general form of complex homomorphism for some subalgebras of absolutely convergent Fourier – Vilenkin series algebra. As a corollary, we obtain weighted analogs of Wiener’s and Levy’s theorems for Fourier – Vilenkin series.

References: 
  1. Агаев Г. Н., Виленкин Н. Я., Джафарли Г. М., Рубинштейн А. И. Мультипликативные системы функций и гармонический анализ на нуль-мерных группах. Баку: Элм, 1981. 180 c.
  2. Эдвардс Р. Ряды Фурье в современном изложении: в 2 т. М.: Мир, 1985. Т. 2. 400 c.
  3. Zelazko W. On the locally bounded and m-convex topological algebras // Studia Math. 1960. Vol. 19, No 3. P. 333–356.
  4. Zelazko W. On the analytic functions in p-normed algebras // Studia Math. 1962. Vol. 21, No 3. P. 345–350.
  5. El Kinani A. A version of Wiener’s and Levy’s theorems // Rend. Circ. Mat. Palermo. 2008. Vol. 57, No 2. P. 343–352.
  6. Alpar L. Gen ́ eralisation d’un th  ́ eoreme de Wiener et de  ́ Levy // Acta Math. Hung. 1970. Vol. 21, No 1–2. P. 11–19.  ́
  7. Агаев Г. Н. Теорема типа Винера для рядов по функциям Уолша // Докл. АН СССР. 1962. Т. 142, No 4. С. 751–753