Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Lukashov А. L. Rational interpolation processes on several intervals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, vol. 5, iss. 1, pp. 34-48. DOI: 10.18500/1816-9791-2005-5-1-34-47, EDN: IUINNQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.09.2005
Full text:
(downloads: 182)
Language: 
Russian
Heading: 
UDC: 
517.5
EDN: 
IUINNQ

Rational interpolation processes on several intervals

Autors: 
Lukashov А. L., Saratov State University
Abstract: 

It is considered the Lagrange interpolation processes such that rational functions with fixed denominators play the role of polynomials vanishing at interpolation nodes. An estimate for Lebesgue constants is obtained for the case of rational functions deviated least from zero on a given system of intervals with maximally possible number of deviation points, and when the matrix of fixed poles is contained in a compact set outside of the system of intervals. V. N. Rusak and G. Min found earlier particular case (for the case of one interval).

References: 
  1. Бернштейн С. Н., “Об ограничении значений многочлена Pn(x) степени n на всем отрезке по его значениям в n + 1 точках отрезка”, Собр. соч., Т. 2, В 4 т., М., 1952, 107–126
  2. Дзядык В. К., Иванов В. В., “Об асимптотике и оценках равномерных норм интерполяционных многочленов Лагранжа по узлам Чебышева”, Матем. сб., 104 (1977), 337–351
  3. Турецкий А. Х., Теория интерполирования в задачах, Т. 1, Минск, 1968
  4. Турецкий А. Х., Теория интерполирования в задачах, Т. 2, Минск, 1977
  5. Привалов А. А., Теория интерполирования функций, Т. 1, 2, Саратов, 1990
  6. Szabados J., Vertesi Р., Interpolation of functions, Singapore, 1990 [7] Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50
  7. Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50
  8. Chen Q., Babushka I., “Approximate optimal points for polynomial interpolation of real functions in an interval and in а triangle”, Comput. Methods Appl. Mech. Engrg., 128 (1995), 405–417
  9. Hesthaven J. S., “From electrostatics to almost optimal nodal sets for polynomial interpolation in а simplex”, SIAМ J. Numer. Anal., 35 (1998), 655–676 
  10. Mastroianni G., Occorsio D., “Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey”, J. Comp. Appl. Math., 134 (2001), 325–341
  11. Кilgore T. A., “A characterization of the Lagrange interpolating projection with minimal Tchebysheff norm”, J. Approx. Theory, 24 (1978), 273–288
  12. Boor С. de, Pinkus A., “Proof of the conjectures of Bernstein and Erdos concerning the optimal nodes for polynomial interpolation”, J. Approx. Theory, 24 (1978), 289– 303
  13. Уолш Дж. Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, М., 1961
  14. Русак В. Н., “О сходимости одного обобщенного интерполяционного полинома”, Докл. АН БССР, 6 (1962), 209–211
  15. Ровба Е. А., “О рациональной интерполяции функции |x|”, Изв. АН БССР. Сер. Физ.-матем. науки, 1989, № 5, 39–46
  16. Rovba E. A., “Orthogonal systems of rational functions on the segment and quadrature of Gauss-type”, Math. Balk., 13 (1999), 187–198 
  17. Старовойтов А. П., О рациональной интерполяции с фиксированными полюсами, Деп. ВИНИТИ 22.05.83, № 2735-83, Ред. журн. “Изв. АН БССР. Сер. физ.- матем. наук”, Минск, 1983
  18. Min G., “Lagrange interpolation and quadrature formula in rational systems”, J. Approx. Theory, 95 (1998), 123–145
  19. Damelin S. B., “The weighted Lebesgue constant of Lagrange interpolation for exponential weights on [−1, 1]”, Acta Math. Hung., 81 (1998), 223–240
  20. Kubayi D. G., “Bounds for weighted Lebesgue functions for exponential weights”, J. Comp. Appl. Math., 133 (2001), 429–443
  21. Szabados J., “On some proЬlems of weighted polynomial approximation and interpolation”, New developments in approximation theory, N.Y., 1999, 315–328
  22. Vertesi Р., “On the Lebesgue function and Lebesgue constant: а tribute to Paul Erdos”, Paul Erdos and its mathematics, Budapest, 2002, 705–728
  23. Bagby Т. Н., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104
  24. Bagby Т. Н., “Rational interpolation with restricted poles”, J. Approx. Theory, 7 (1973), 1–7
  25. Calle В. de la, Lagomasino G. L., “Convergence of multipoint Pade-type approximants”, J. Approx. Theory, 109 (2001), 257–278
  26. Gardiner S. J., Pommerenke С., “Balayage properties related to rational interpolation”, Constr. Approx., 18 (2002), 417–426
  27. Гончар А. А., Лопес Г. Л., “О теореме Маркова для многоточечных аппроксимаций”, Матем. сб., 105 (1978), 512–524
  28. Бейкер Дж., Грейвс-Моррис П., Аnпроксимации Паде, М., 1986 [29] Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316
  29. Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316
  30. Galluci М. A., Jones W. B., “Rational approximations corresponding to Newton series (Newton–Pade approximants)”, J. Approx. Theory, 17 (1976), 366–392
  31. Antoulas A. C., Anderson B. D. О., “A summary of recent results on the scalar rational interpolation problem”, Proc. 25th IEEE Conf. Decis. Control (1986), 2187– 2188
  32. Baltensperger R., “Some results on linear rational trigonometric interpolation”, Comput. Math. Appl., 43 (2002), 737–746
  33. Berrut J.-P., “Rational functions for guaranteed and experimentally well-conditioned global interpolation”, Comput. Math. Appl., 15 (1988), 1–16
  34. Berrut J.-P., Mittelmann Н. D., “Rational interpolation through the optimal attachement of poles to the interpolating polynomial”, Numerical Algorithms, 23 (2000), 315–328
  35. Fournier J.-D., Pindor М., “Rational interpolation from stochastic data: а new Froissarts phenomenon”, Reliable Computing, 6 (2000), 391–409
  36. Gutknecht М. Н., In what sense is the rational interpolation problem well posed? Consr. Approx., 6 (1990), 437–450
  37. Nananukul S., Gong W.-B., “Rational interpolation for stochastic DES’s: convegence issues”, IEEE Trans. Autom. Control, 44 (1999), 1070–1073
  38. Ravi М. S., “Geometric methods in rational interpolation theory”, Lin. Alg. Appl., 258 (1997), 159–168 
  39. Henry М. S., Swetits J. J., “Lebesgue and strong unicity constants for Zolotareff polynomials”, Rocky Mount. J. Math., 12 (1982), 547–556
  40. Лебедев В. И., “Экстремальные многочлены и методы оптимизации вычислительных алгоритмов”, Матем. сб., 195:210 (2004), 21–66
  41. Lukashov A. L., “On Chebyshev–Markov rational fractions over several intervals”, J. Approx. Theory, 95 (1998), 333–352
  42. Лукашов А. Л., “Неравенства для производных рациональных функций на нескольких отрезках”, Изв. РАН. Сер. Матем., 68:23 (2004), 115–138
  43. Ransford Т., Potential theory in the complex plane, Cambridge, 1995
  44. Stahl H., Totik V., General orthogonal polynomials, N.Y., 1992
  45. Peherstorfer F., Steinbauer R., “Strong asymptotics of orthonormal polynomials with the aid of Green’s function”, SIAM J. Math. Anal., 32 (2000), 385–402
  46. Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160
Received: 
17.03.2005
Accepted: 
11.08.2005
Published: 
30.09.2005