Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Arutyunyan R. V. Simulation of the Temperature and Electric Fields by High-current Pulse to the Electrode. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 2, pp. 138-144. DOI: 10.18500/1816-9791-2016-16-2-138-144, EDN: WCNQHJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 251)

Simulation of the Temperature and Electric Fields by High-current Pulse to the Electrode

Arutyunyan Robert Vladimirovich, Moscow Technical University of Communications and Informatics, Russia

The paper investigates the influence of nonlinearities thermophysical properties and phase transitions of melting and evaporation on the electrical and thermal processes at heating of a metallic electrode of high-current pulse. We formulate a mathematical model and develop a finite-difference method and a computer program, allowing effectively to carry out computer modeling of thermal and physical processes when exposed to high current pulse to metal electrodes. The article describes the results of the calculation of the fields based on cross-cutting enthalpy method. A series of informative calculation is implemented for the case of iron. The study found the following effects – a significant influence of the nonlinearity of the thermophysical parameters, phase transitions melting and evaporation, types of boundary conditions on the values of temperature and electric fields.

  1. Taev I. S. Elektricheskie kontakty i dugogasitel’nye ustroistva apparatov nizkogo napriazheniia [Electrical contacts and arcing devices low-voltage devices]. Moscow, Energiia, 1973 (in Russian).
  2. Ul’rikh T. A. Matematicheskoe modelirovanie protsessa kontaktnoi tochechnoi svarki [Mathematical modeling of the resistance spot welding process]: Dis. ... kand. tekhn. nauk. Perm’, 2000. 15 p. (in Russian).
  3. Abramov N. R., Kuzhekin I. P., Larionov V. P. Characteristics of penetration of the walls of metal objects when exposed to lightning. Elektrichestvo [Electricity], 1986, no. 11, pp. 22–27 (in Russian).
  4. Borisenko P. A., Pavleino O. M., Pavleino M. A. Metody chislennogo resheniia nelineinykh nestatsionarnykh termoelektromekhanicheskikh kontaktnykh zadach [Methods for the numerical solution of nonlinear transient termoelektromehanicheskih contact problems]. Sovremennye problemy elek-trofiziki i elektrogidrodinamiki zhidkostei [Modern Problems of Electrophysics and Electrohydro-dynamics Liquids] : Proc. IX Intern. Sci. Conf. S.-Petersburg, 2009, pp. 287–291 (in Russian).
  5. Samarskii A. A., Moiseyenko B. D. An economic continuous calculation scheme for the Stefan multidimensional problem. U.S.S.R. Comput. Math. Math. Phys., 1965, vol. 5, no. 5, pp. 43–58. DOI: https://doi.org/10.1016/0041-5553(65)90004-2.
  6. Samarskii A. A., Vabishchevich P. N. Vychislitel’naia teploperedacha [Computational Heat Transfer]. Moscow, Editorial URSS, 2014 (in Russian).
  7. Weisenfels C., Wriggers P. Numerical modeling of electrical contacts // Computational Mechanics.2010. Vol. 46, iss. 2. P. 301–314.
  8. Thermal properties of melts. Reference and information portal ebibl/umkd/Mamina, 2009. Available at: http://files.lib.sfu-kras.ru/ebibl/umkd/Mamina/u_lectures.pdf (accessed : 11.11.2015).
  9. The specific heat of iron. Reference and information portal "Laboratory of large ingots steel-cast.ru", 2009. Available at: http://steelcast.ru/iron_heat_capacity (accessed : 11.11.2015).