Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Isaeva A. A., Isaeva E. A., Skripal A. V., Zimnyakov D. A. Statistical modeling of the depolarizing properties of optically dense dispersive systems in the small-angle scattering mode of probe light propagation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 2, pp. 281-294. DOI: 10.18500/1816-9791-2025-25-2-281-294, EDN: ZNKFMP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.05.2025
Full text:
(downloads: 48)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
51.73
EDN: 
ZNKFMP

Statistical modeling of the depolarizing properties of optically dense dispersive systems in the small-angle scattering mode of probe light propagation

Autors: 
Isaeva Anna A., Yuri Gagarin State Technical University of Saratov
Isaeva Elena A., Yuri Gagarin State Technical University of Saratov
Skripal Anatoly Vladimirovich, Saratov State University
Zimnyakov Dmitry A., Yuri Gagarin State Technical University of Saratov
Abstract: 

Results of statistical modeling of the polarization degree decay in the case of forward propagation of a linearly polarized laser beam in multiple scattering dispersive systems are presented. Disordered ensembles of dielectric spherical particles with various values of the wave parameter are considered as these dispersive systems. The modeling algorithm is based on an iterative transformation of the Jones vectors for partial components of the multiple scattered light fields in the considered systems due to random sequences of scattering events; the transformation procedure is provided using the Monte-Carlo simulation. The average number of scattering events corresponding to the $1/e$ decay of the polarization degree, and the ratio of the depolarization length to the mean transport free path of probe light in the scattering systems are considered as the key parameters. It was found that the maximal depolarization length is achieved in the case when the wave parameter of scattering particles is close to the value corresponding to the first Mie resonance of the dependence of the scattering efficiency on the wave parameter. The modeling results are compared to the experimental and theoretical data obtained using a hybrid approach in the framework of the diffusion approximation of radiative transfer theory.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 25-29-00679).
References: 
  1. Aiello A., Woerdman J. P. Physical bounds to the entropy-depolarization relation in random light scattering. Physical Review Letters, 2005, vol. 94, iss. 9, art. 090406. https://doi.org/10.1103/PhysRevLett.94.090406
  2. Puentes G., Voigt D., Aiello A., Woerdman J. P. Experimental observation of universality in depolarized light scattering. Optics Letters, 2005, vol. 30, iss. 23, pp. 3216–3218. https://doi.org/10.1364/OL.30.003216
  3. Brosseau C., Bicout D. Entropy production in multiple scattering of light by a spatially random medium. Physical Review E, 1994, vol. 50, iss. 6, pp. 4997–5005. https://doi.org/10.1103/physreve.50.4997
  4. Vynck K., Pierrat R. Multiple scattering of polarized light in disordered media exhibiting short-range structural correlations. Physical Review A, 1994, vol. 94, iss. 3, art. 033851. https://doi.org/10.1103/physreva.94.033851
  5. MacKintosh F. C., Zhi J. X., Pine D. J., Weitz D. A. Polarization memory of mutiply scattered light. Physical Review B, 1989, vol. 40, iss. 13, pp. 9342–9345. https://doi.org/10.1103/PhysRevB.40.9342
  6. Pires H. D., Monken C. H. On the statistics of the entropy-depolarization relation in random light scattering. Optics Express, 2008, vol. 16, iss. 25, pp. 210059–210068. https://doi.org/10.1364/oe.16.021059
  7. MacKintosh F. C., John S. Diffusing-wave spectroscopy and multiple scattering of light in correlated random media. Physical Review B, 1989, vol. 40, iss. 4, pp. 2383–2406. https://doi.org/10.1103/PhysRevB.40.2383
  8. Nieuwenhuizen Th. M., Van Rossum M. C. W. Intensity distributions of waves transmitted through a multiple scattering medium. Physical Review Letters, 1995, vol. 74, iss. 14, pp. 2674–2677. https://doi.org/10.1103/PhysRevLett.74.2674
  9. Simon B. N., Simon S., Mukunda N., Gori F., Santarsiero M., Borghi R., Simon R. A complete characterization of pre-Mueller and Mueller matrices in polarization optics. Journal of the Optical Society of America A, 2010, vol. 27, iss. 2, pp. 188–199. https://doi.org/10.1364/JOSAA.27.000188
  10. Ortega-Quijano N., Arce-Diego J. L. Mueller matrix differential decomposition. Optics Letters, 2011, vol. 36, iss. 10, pp. 1942–1946. https://doi.org/10.1364/OL.36.001942
  11. Dremin V., Zharkikh E. V., Lopushenko I., Marcinkevics Z., Bykov A. V., Meglinski I. Incremental residual polarization caused by aging in human skin. Journal of Biomedical Optics, 2024, vol. 29, iss. 5, pp. 052912–052922. https://doi.org/10.1117/1.JBO.29.5.052912
  12. Mann P., Thapa P., Nayyar V., Surya V., Mishra D., Mehta D. Multispectral polarization microscopy of different stages of human oral tissue: A polarization study. Journal of Biophotonics, 2024, vol. 17, iss. 2, pp. e202300236–e202300246. https://doi.org/10.1002/jbio.202300236
  13. Gassner C., Vongsvivut J., Ng S. H., Ryu M., Tobin M. J., Juodkazis S., Morikawa J., Wood B. R. Linearly polarized infrared spectroscopy for the analysis of biological materials. Society for Applied Spectroscopy, 2023, vol. 77, iss. 9, pp. 977–1008. https://doi.org/10.1177/00037028231180233
  14. Song J., Zeng N., Guo W., Guo J., Ma H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomedical Optics Express, 2021, vol. 12, iss. 8, pp. 4821–4836. https://doi.org/10.1364/BOE.426653
  15. Kapahi C., Silva A. E., Cory D. G., Kulmaganbetov M., Mungalsingh M. A., Pushin D. A., Singh T., Thompson B., Sarenac D. Measuring the visual angle of polarization-related entoptic phenomena using structured light. Biomedical Optics Express, 2024, vol. 15, iss. 2, pp. 1278–1287. https://doi.org/10.1364/BOE.507519
  16. Pham T. T. H., Quach T. N. N., Vo Q. H. Q. Analysis of polarization features of human breast cancer tissue by Mueller matrix visualization. Journal of Biomedical Optics, 2024, vol. 29, iss. 5, art. 052917. https://doi.org/10.7868/S0869565214260041
  17. Twersky V. On propagation in random media of discrete scatterers. Proceedings of Symposia in Applied Mathematics, 1964, vol. 16, pp. 84–116. https://doi.org/10.1090/psapm/016/0163605
  18. Parnell W. J., Abrahams I. D. Multiple point scattering to determine the effective wavenumber and effective material properties of an inhomogeneous slab. Waves in Random Complex Media, 2010, vol. 20, iss. 4, pp. 678–701. https://doi.org/10.1080/17455030.2010.510858
  19. Gower A. L, Parnell W. J., Abrahams I. D. Multiple waves propagate in random particulate materials. SIAM Journal on Applied Mathematics, 2019, vol. 79, iss. 6, pp. 2569–2592. https://doi.org/10.1137/18M122306X
  20. Mishchenko M. I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: A microphysical derivation from statistical electromagnetics. Applied Optics, 2002, vol. 41, iss. 33, pp. 7114–7134. https://doi.org/10.1364/AO.41.007114
  21. Yang W., Jin X., Gao X. Vector radiative transfer equation for arbitrary shape particles derived from Maxwell’s electromagnetic theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, vol. 265, art. 107307. https://doi.org/10.1016/j.jqsrt.2020.107307
  22. Ghosh N., Wood M. F. G., Vitkin I. A. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. Journal of Biomedical Optics, 2008, vol. 13, iss. 4, art. 044036. https://doi.org/10.1117/1.2960934
  23. Wood M. F. G., Guo X., Vitkin I. A. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology. Journal of Biomedical Optics, 2007, vol. 12, iss. 1, art. 014029. https://doi.org/10.1117/1.2434980
  24. Zimnyakov D. A. On some manifestations of similarity in multiple scattering of coherent light. Waves Random Media, 2000, vol. 10, iss. 4, pp. 417–434. https://doi.org/10.1088/0959-7174/10/4/302
  25. Zimnyakov D. A., Sinichkin Yu. P. Ultimate degree of residual polarization of incoherently backscattered light for multiple scattering of linearly polarized light. Optics and Spectroscopy, 2001, vol. 91, iss. 1, pp. 103–108. https://doi.org/10.1134/1.1388331, EDN: LGMUBJ
  26. Zimnyakov D. A., Sinichkin Yu. P. Polarization visualization of scattering media with CW laser radiation. Optics and Spectroscopy, 2000, vol. 88, iss 6, pp. 926–932. https://doi.org/10.1134/1.626902
  27. Novitsky P. V., Zograf I. A. Otsenka pogreshnostey rezul’tatov izmereniy [Estimation of the measurement results error]. Leningrad, Energoatomizdat, 1991. 304 p. (in Russian).
  28. Ishimaru A. Wave propagation arid scattering in random media. New York, Academic, 1978. 600 p.
  29. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. 1st ed. New York, Wiley VCH, 1983. 544 p. (Russ. ed.: Moscow, Mir, 1986. 564 p.).
  30. Henyey L. G., Greenstein J. L. Diffuse radiation in the Galaxy. Astrophysical Journal, 1941, vol. 93, pp. 70–83. https://doi.org/10.1086/144246
  31. Bezludnaya I. S., Chernova S. P., Pravdin A. B. On one approach to description of multilayer tissue fluorescence. Proceedings, vol. 4241: Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine II, 2001, pp. 290–296. https://doi.org/10.1117/12.431534
  32. Bicout D., Brosseau C., Martinez A. S., Schmitt J. M. Depolarization оf multiply scattering waves by spherical diffusers: Influence оf size parameter. Physical Review E, 1994, vol. 49, iss. 2, pp. 1767–1770. https://doi.org/10.1103/PhysRevE.49.1767
Received: 
20.05.2024
Accepted: 
10.09.2024
Published: 
30.05.2025