Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kolesnikova A. S. Study of the mechanical properties of carbon molecular structures in the form of multilayer graphene with vertically oriented carbon nanotubes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 4, pp. 489-502. DOI: 10.18500/1816-9791-2021-21-4-489-502, EDN: PZQEFX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2021
Full text:
(downloads: 789)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.98
EDN: 
PZQEFX

Study of the mechanical properties of carbon molecular structures in the form of multilayer graphene with vertically oriented carbon nanotubes

Autors: 
Kolesnikova Anna Sergeevna, Saratov State University
Abstract: 

In this work, we performed a theoretical study of the Young's modulus of carbon molecular structures in the form of multilayer graphene with vertically oriented carbon nanotubes (VO-CNTs). The carbon nanotubes that make up the molecular structures were of two types (zigzag and armchair). The studies were carried out by the molecular-mechanical method with the energy potential of AIREBO. It was found that the Young's modulus is higher for molecular structures of composites in which CNTs of different types are located along the zigzag edge of the graphene sheet. It is shown that the Young's modulus of the molecular structure with VO-CNTs on graphene containing zigzag and armchair nanotubes is higher than the Young's modulus of the molecular structure with VO-CNTs on graphene containing only zigzag CNTs. These results can be used in the design of electromechanical devices that include a molecular structure with VO-CNTs on graphene as an element base.

Acknowledgments: 
This work was supported by the Presidential Scholarship 2019-2021 (project No. SP-310.2019.1).
References: 
  1. Dong P., Pint C. L., Hainey M., Mirri F., Zhan Y., Zhang J., Pasquali M., Hauge R. H., Verduzco R., Jiang M. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2011, vol. 3, no. 8, pp. 3157–3161. https://doi.org/10.1021/am200659y
  2. Rolison D. R., Long J. W., Lytle J. C., Fischer A. E., Rhodes C. P., McEvoy T. M., Bourg M. E., Lubers A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chemical Society Reviews, 2009, vol. 38, iss. 1, pp. 226–252. https://doi.org/10.1039/B801151F
  3. Chen Z., Ren W., Gao L., Liu B., Pei S., Cheng H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, vol. 10, pp. 424–428. https://doi.org/10.1038/nmat3001
  4. Jiang H., Lee P. S., Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013, vol. 6, iss. 1, pp. 41–53. https://doi.org/10.1039/C2EE23284G
  5. Nagelli E. A., Huang L., Dai A. Q.-Z., Du F., Dai L. 3D vertically aligned CNT/graphene hybrids from layer-by-layer transfer for supercapacitors. Particle & Particle Systems Characterization, 2017, vol. 34, iss. 9. Special Issue: Graphene Oxide Liquid Crystals 1700131, pp. 1–5. https://doi.org/10.1002/ppsc.201700131
  6. Wang D. W., Li F., Liu M., Lu G. Q., Cheng H.-M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie, 2007. Vol. 47, iss. 2, pp. 373–376. https://doi.org/10.1002/anie.200702721
  7. Lee D. H., Lee J. A., Lee W. J., Kim S. O. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small, 2011, vol. 7, iss. 1, pp. 95–100. https://doi.org/10.1002/smll.201001168
  8. Xu Y., Chen C.-Y., Zhao Z., Lin Z., Lee C., Xu X., Wang C., Huang Y., Shakir M. I., Duan X. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Letters, 2015, vol. 15, iss. 7, pp. 4605–4610. https://doi.org/10.1021/acs.nanolett.5b01212
  9. Moradia M., Mohandesi J. A. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures. AIP Advances, 2015, vol. 5, pp. 117143-1–117143-12. https://doi.org/10.1063/1.4936560
  10. Kolesnikova A. S., Baranov I. A., Mazepa M. M. The Young’s modulus of a zigzag CN-T/graphene composite by tension along the graphene direction. Physics of the Solid State, 2020, vol. 62, iss. 10, pp. 1889–1891. https://doi.org/10.1134/S1063783420100169
  11. Dong P., Zhu Y., Zhang J., Hao F., Wu J., Lei S., Lin H., Hauge R. H., Tour J. M., Lou J. Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO- and PT-free flexible cathode for application in solar cells. Journal of Materials Chemistry A, 2014, vol. 2, iss. 48, pp. 20902–20907. https://doi.org/10.1039/C4TA05264A
  12. Das S., Seelaboyina R., Verma V., Lahiri I., Hwang J. Y., Banerjeeb R., Choi W. Synthesis and characterization of self-organized multilayered graphene-carbon nanotube hybrid films. Journal of Materials Chemistry, 2011, vol. 21, iss. 20, pp. 7289–7295. https://doi.org/10.1039/C1JM10316D
  13. Lee D. H., Kim J. E., Han T. H., Hwang J. W., Jeon S., Choi S. Y., Hong S. H., Lee W. J., Ruoff R. S., Kim S. O. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Advanced Materials, 2010, vol. 22, iss. 11, pp. 1247–1252. https://doi.org/10.1002/adma.200903063
  14. Kim N. D., Li Y., Wang G., Fan X., Jiang J., Li L., Ji Y., Ruan G., Hauge R. H., Tour J. M. Growth and transfer of seamless 3D graphene-nanotube hybrids. Nano Letters, 2016, vol. 16, iss. 2, pp. 1287–1292. https://doi.org/10.1021/acs.nanolett.5b04627
  15. Jousseaume V., Cuzzocrea J., Bernier N., Renard V. T. Few graphene layers/carbon nanotube composites grown at complementary-metal-oxide-semiconductor compatible temperature. Applied Physics Letters, 2011, vol. 98, iss. 12, pp. 123103-1–123103-3. https://doi.org/10.1063/1.3569142
  16. Stuart S. J., Tutein A. B., Harrison J. A. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 2000, vol. 112, iss. 14, pp. 6472–6486. https://doi.org/10.1063/1.481208
  17. Glukhova O. E., Kolesnikova A. S. Empirical modeling of longitudinal tension and compression of graphene nanoparticles and nanoribbons. Physics of the Solid State, 2011, vol. 53, iss. 9, pp. 1957–1962. http://doi.org/10.1134/S1063783411090137
  18. Xu Z., Qiu L., Ding F. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth. Chemical Science, 2018, vol. 9, pp. 3056–3061. https://doi.org/10.1039/C7SC04714B
  19. Fang T. H., Chang W. J., Fan Y. C., Sun W. L. Molecular dynamics study of the tensile behavior of pillared graphene nanostructures. Japanese Journal of Applied Physics, 2016, vol. 55, no. 4, pp. 040301. https://doi.org/10.7567/jjap.55.040301
  20. Wang Y., Zhu Y., Wang F., Liu X., Wu H. Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017, vol. 118, pp. 588–596. https://doi.org/10.1016/j.carbon.2017.03.092
  21. Qin L. C., Zhao X., Hirahara K., Miyamoto Y., Ando Y., Iijima S. The smallest carbon nanotube. Nature, 2000, vol. 408, pp. 50. https://doi.org/10.1038/35040699
  22. Kolesnikova A. S., Mazepa M. M. The young modulus and the Poisson coefficient of two-dimensionally extended columnar graphene. Physics of the Solid State, 2018, vol. 60, iss. 9, pp. 1827–1830. https://doi.org/10.1134/S1063783418090160
  23. Song L., Guo Z., Chai G. B., Wang Z., Li Y., Luan Y. A finite element method to investigate the elastic properties of pillared graphene sheet under different conditions. Carbon, 2018, vol. 140, pp. 210–217. https://doi.org/10.1016/j.carbon.2018.08.058
  24. Kolesnikova A. S., Mazepa M. M., Kirillova I. V., Kossovich L. Yu. Water purification using the pillared graphene owning the most mechanical strength. Proceedings SPIE 10893, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications XI, 2019, vol. 108930T, pp. 108930T-1. https://doi.org/10.1117/12.2508795
Received: 
30.04.2021
Accepted: 
21.06.2021
Published: 
30.11.2021