Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Ignatyev M. Y. Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 4, pp. 542-549. DOI: 10.18500/1816-9791-2014-14-4-542-549, EDN: TBDAHJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.12.2014
Full text:
(downloads: 174)
Language: 
Russian
Heading: 
UDC: 
517.984
EDN: 
TBDAHJ

Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle

Autors: 
Ignatyev M. Yu., Saratov State University
Abstract: 

An inverse scattering problem is studied for variable orders differential operators on simplest noncompact graph with cycle. A uniqueness theorem of recovering coefficients of operators from the scattering data is provided.

References: 
  1.  Langese J., Leugering G., Schmidt J. Modeling, analysis and control of dynamic elastic multi-link structures. Boston : Birkhauser, 1994.
  2.  Kuchment P. Quantum graphs. Some basic structures // Waves Random Media. 2004. Vol. 14. P. S107–S128.
  3.  Pokornyi Yu., Borovskikh A. Differential equations on networks (geometric graphs) // J. Math. Sci. (N.Y.). 2004. Vol. 119, № 6. P. 691–718.
  4.  Покорный Ю. В., Белоглазова Т. В., Дикарева Е. В., Перловская Т. В. О функции Грина для локально взаимодействующей системы обыкновенных уравнений разного порядка // Матем. заметки. 2003. Т. 74, № 1. С. 146–148.
  5.  Юрко В. А. Восстановление дифференциальных операторов на звездообразном графе с разными порядками на разных ребрах // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 13, вып. 1, ч. 2. С. 112–116.
  6.  Bondarenko N. An inverse problem for the differential operator on the graph with a cycle with different orders on different edges. Preprint arXiv:1309.5360v3. 
  7.  Beals R. The inverse problem for ordinary differential operators on the line // Amer. J. Math. 1985. Vol. 107. P. 281–366.
  8.  Юрко В. А. Введение в теорию обратных спектральных задач. М. : Физматлит, 2007. 384 с.
  9. Леонтьев А. Ф. Целые функции. Ряды экспонент. М. : Физматлит, 1983. 176 с.
Received: 
07.06.2014
Accepted: 
25.10.2014
Published: 
01.12.2014