Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Krasnoschekikh G. V., Volchkov V. V. A uniqueness theorem for mean periodic functions on the Bessel – Kingmann hypergroup. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 1, pp. 24-33. DOI: 10.18500/1816-9791-2025-25-1-24-33, EDN: CEYQRP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.02.2025
Full text:
(downloads: 47)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
517.44
EDN: 
CEYQRP

A uniqueness theorem for mean periodic functions on the Bessel – Kingmann hypergroup

Autors: 
Krasnoschekikh Gleb Vitalievich, Donetsk State University
Volchkov Vitaliy Vladimirovich, Donetsk State University
Abstract: 

One of the properties of a periodic function on the real axis is that it is completely determined by its values on the period. This fact admits the following nontrivial multidimensional generalization: if a function fC(Rn) (n2) with zero integrals over all spheres (or balls) of fixed radius r is zero in some ball of radius r, then f is zero in Rn. The condition of infinite smoothness of the function f in this statement cannot be relaxed. In this paper, we study a similar phenomenon for solutions of convolution equations related to the generalized Bessel shift operator. First, we consider the case when the convolution factor in the equation is an indicator of a segment symmetric with respect to zero. It is shown that the solutions to such an equation are determined by their values on the specified segment. Further, a generalization of  this property for the general Bessel convolution equation is given. The results obtained are analogues of the well-known uniqueness theorems for mean periodic functions belonging to F. John, Yu.I. Lyubich and A.F. Leontiev.

Acknowledgments: 
The study was conducted on the topic of the state task (registration number: 124012400352-6).
References: 
  1. John F. Plane waves and spherical means: Applied to partial differential equations. New York, Interscience Publishers, 1955. 190 p. https://doi.org/10.1007/978-1-4613-9453-2
  2. Smith J. D. Harmonic analysis of scalar and vector fields in Rn. Mathematical Proceedings of the Cambridge Philosophical Society, 1972, vol. 72, iss. 3, pp. 403–416. https://doi.org/10.1017/S0305004100047241
  3. Volchkov V. V., Volchkov Vit. V. Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group. London, Springer, 2009. 671 p. https://doi.org/10.1007/978-1-84882-533-8
  4. Agranovsky M. L., Narayanan E. K. A local two radii theorem for the twisted spherical means on Cn. Contemporary Mathematics, 2005, vol. 382, pp. 13–27. https://doi.org/10.1090/conm/382
  5. Savost’yanova I. M., Volchkov Vit. V. Analog of the John theorem for weighted spherical means on a sphere. Ukrainian Mathematical Journal, 2013, vol. 65, iss. 5, pp. 674–683. https://doi.org/10.1007/s11253-013-0805-7
  6. Lyubich Yu. I. On a class of integral equations. Sbornik: Mathematics, 1956, vol. 38(80), iss. 2, pp. 183–202 (in Russian).
  7. Lyubich Yu. I. Uniqueness theorem for mean-periodic functions. Journal of Soviet Mathematics, 1984, vol. 26, iss. 5, pp. 2206–2206. https://doi.org/10.1007/BF01221539
  8. Kargaev P. P. Zeros of mean-periodic functions. Mathematical Notes of the Academy of Sciences of the USSR, 1985, vol. 37, iss. 3, pp. 181–183. https://doi.org/10.1007/BF01158736
  9. Leont’ev A. F. On the properties of a sequence of Dirichlet polynomials, convergent in an interval of the imaginary axis. Izvestiya Akademii nauk SSSR [Proceedings of the USSR Academy of Sciences], 1965, vol. 29, iss. 2, pp. 269–328 (in Russian).
  10. Leont’ev A. F. Posledovatel’nosti polinomov iz eksponent [Sequences of polynomials from exponents]. Moscow, Nauka, 1980. 384 p. (in Russian).
  11. Zaraisky D. A. Refinement of the uniqueness theorem for solutions of the convolution equation. Proceedings of the Institute of Applied Mathematics and Mechanics of NAS of Ukraine, 2006, vol. 12, pp. 69–75.
  12. Zaraisky D. A. A class of mean-periodic functions which are uniquely determined by their restrictions to the “period”. Proceedings of the Institute of Applied Mathematics and Mechanics, 2019, vol. 33, pp. 38–41 (in Russian).
  13. Zaraisky D. A. A new uniqueness theorem for one-dimensional convolution equation. Proceedings of the Institute of Mathematics and Mechanics, 2020, vol. 34, pp. 63–67.
  14. Volchkov V. V. Integral geometry and convolution equations. Dodrecht, Kluwer Academic Publishers, 2003. 454 p. https://doi.org/10.1007/978-94-010-0023-9
  15. Quinto E. T. Pompeiu transforms on geodesic spheres in real analytic manifolds. Israel Journal of Mathematics, 1993, vol. 84, pp. 353–363. https://doi.org/10.1007/BF02760947
  16. Zaraisky D. A. A uniqueness theorem for functions with zero integrals over balls. Proceedings of the Institute of Applied Mathematics and Mechanics of NAS of Ukraine, 2012, vol. 25, pp. 77–83.
  17. Levitan B. M. Teoriya operatorov obobshchennogo sdviga [Theory of generalized translation operators]. Moscow, Nauka, 1973. 312 p. (in Russian).
  18. Trimèche K. Generalized wavelets and hypergroups. London, CRC Press, 1997. 364 p. https://doi.org/10.1201/9780203753712
  19. Kipriyanov I. A. Singulyarnye ellipticheskie kraevye zadachi [Singular elliptic boundary value problems]. Moscow, Nauka, 1997. 208 p. (in Russian)
  20. Sitnik S. M., Shishkina E. L. Metod operatorov preobrazovaniya dlya differentsial’nykh uravnenii s operatorami Besselya [Transformation operator method for differential equations with Bessel operators]. Moscow, Nauka, 2019. 224 p. (in Russian). EDN: YGUEZW
  21. Platonov S. S. Bessel harmonic analysis and approximation of functions on the half-line. Izvestia: Mathematics, 2007, vol. 71, iss. 5, pp. 1001–1048. https://doi.org/10.1070/IM2007v071n05ABEH002379
  22. Selmi B., Nessibi M. M. A local two radii theorem on the Chébli-Trimèche hypergroup. Journal of Mathematical Analysis and Applications, 2007, vol. 329, iss. 1, pp. 163–190. https://doi.org/10.1016/j.jmaa.2006.06.061
  23. Litvinov G. L. Hypergroups and hypergroup algebras. Journal of Soviet Mathematics, 1987, vol. 38, pp. 1734–1761. https://doi.org/10.1007/BF01088201
  24. Berezansky Yu. M., Kalyuzhnyi A. A. Harmonic analysis in hypercomplex systems. Dordrecht, Springer, 1998. 486 p. https://doi.org/10.1007/978-94-017-1758-8
  25. Koornwinder T. H. Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey R. A., Koornwinder T. H., Schempp W. (eds.). Special Functions: Group Theoretical Aspects and Applications. Dordrecht, D. Reidel Publishing Company, 1984, pp. 1–85. https://doi.org/10.1007/978-94-010-9787-1_1
Received: 
28.09.2023
Accepted: 
13.03.2024
Published: 
28.02.2025