Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Ratseev S. M., Rostov M. A. Zero-Knowledge Proof Authentication Protocols. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 1, pp. 114-121. DOI: 10.18500/1816-9791-2019-19-1-114-121, EDN: ULRWTX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 515)
Article type: 

Zero-Knowledge Proof Authentication Protocols

Ratseev Sergey Mihailovich, Ulyanovsk State University
Rostov Mihail A., Ulyanovsk State University

The paper presented the comparative analysis of the authentication Shnorr’s protocol and the authentication protocol based on the task of finding a Hamilton cycle in the graph. It is shown that with the use of CUDA technology the productivity of protocols on graphs is a shighas Shnorr’s protocol productivity. Theim portance of such research is that protocols on graphs (the authentication protocol on the basis of the proof of graph isomorphism, the authentication protocol based on the task of finding a Hamilton cycle in the graph, etc.) have the property of zero-know ledge proof. These protocol sare base don NP complete tasks  there for ethey are independent of quantum computings, namely, are resistant to the quantum attacks. Also the modified algorithms of two-step authentication protocols with zero-knowledge proof based on asymmetric ciphers with the use of elliptic curves are also given.

  1. Cheremushkin A. V. Kriptograficheskie protokoly. Osnovnye svoistva i uyazvimosti [Cryptographic Protocols. Basic Properties and Vulnerability]. Moscow, IC “Akademiya”, 2009. 272 p. (in Russian).
  2. Moldovyan A. A., Moldovyan D. N., Levina A. B. Protokoly autentifikacii s nulevym razglasheniem sekreta [Authentication protocols with zero knowledge proof]. St. Petersburg, ITMO Univ., 2016. 55 p. (in Russian).
  3. Schnorr C. P. Efficient Identification and Signatures for Smart Cards. Advances in Cryptology – CRYPTO’89. Proceedings. CRYPTO 1989. Lecture Notes in Computer Science, vol. 435. New York, Springer, 1990, pp. 239–252. DOI: https://doi.org/10.1007/0-387-34805-0_22
  4. Hankerson D., Menezes A., Vanstone S. Guide to Elliptic Curve Cryptography. New York, Springer-Verlag, 2004. 358 p. DOI:https://doi.org/10.1007/b97644
  5. An Elliptic Curve Cryptography (ECC) Primer: why ECC is the next generation of public key cryptography, The Certicom Corp. ’Catch the Curve’ White Paper Series, June 2004. 24 p. Available at: https://www.certicom.com/content/dam/certicom/images/pdfs/WP-ECCprimer.pdf (accessed 05 September 2017).
  6. Ratseev S. M., Rostov M. A. Methods of an acceleration and enhancement of the cryptography authentication protocol with zero disclosure of knowledge on the basis of the task about finding of a hamilton cycle in the graph. Belgorod State University Scientific Bulletin. Economics. Computer Science, 2017, no. 16(265), iss. 43, pp. 131–137 (in Russian).
  7. Stone J. E., Phillips J. C., Freddolino P. L., Hardy D. J., Trabuco L. G., Schulten K. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 2007, vol. 28, no. 16, pp. 2618–2640. DOI: https://doi.org/10.1002/jcc.20829
  8. Van Meel J. A., Arnold A., Frenkel D., Zwart S. P., Belleman R. Harvesting graphics power for MD simulations. Molecular Simulation, 2008, vol. 34, no. 3, pp. 259–266. DOI: https://doi.org/10.1080/08927020701744295
  9. Harris C., Haines K., Staveley-Smith L. GPU accelerated radio astronomy signal convolution. Exp. Astron., 2008, vol. 22, iss. 1–2, pp. 129–141. DOI: https://doi.org/10.1007/s10686-008-9114-9
  10. Muyan-Ozcelik P., Owens J. D., Xia J., Samant S. S. Fast deformable registration on the GPU: A CUDA implementation of demons. In: Proc. Int. Conf. Computational Science and its Applications, Perugia, Italy, 2008, pp. 223–233. DOI: https://doi.org/10.1109/ICCSA.2008.22
  11. ISO/IEC 9798-5:2009(E): Information technology – Security techniques – Entity authentication – Part 5: Mechanisms using zero-knowledge technique. Available at: https://www.iso.org/standard/50456.html (accessed 05 September 2018).
Short text (in English):
(downloads: 93)