# displacement vector

## On the approximation of class C(0) components of physical quantities in curved coordinate systems

In numerical methods for calculating the strength of technospheric objects approximating expressions of the desired values in terms of their nodal values are widely used.

## Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations

A curvilinear finite element of the median line of an axisymmetrically loaded shell of revolution with a stiffness matrix of $8{\times} 8$ size is used when choosing nodal unknowns in the form of displacements and their first derivatives is used. The constitutive equations at the loading step are implemented in two versions. In the first version, the relations of the deformation theory of plasticity are used, which consist of expressions for the elastic and plastic parts.

## Representation of Waves of Displacements and Micro-rotations by Systems of the Screw Vector Fields

The present study concerns the coupled vector differential equations of the linear theory of micropolar elasticity formulated in terms of displacements and micro-rotations in the case of a harmonic dependence of the physical fields on time. The system is known from many previous discussions on the micropolar elasticity. A new analysis aimed at uncoupling the coupled vector differential equation of the linear theory of micropolar elasticity is carried out.