For citation:
Soldatova T. A. Boundary Properties of Generalized Cauchy Type Integrals in the Space of Smooth Functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 3, pp. 95-109. DOI: 10.18500/1816-9791-2011-11-3-1-95-109
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
15.07.2011
Full text:
(downloads: 188)
Language:
Russian
Heading:
UDC:
517.956
Boundary Properties of Generalized Cauchy Type Integrals in the Space of Smooth Functions
Autors:
Soldatova T. A., Lomonosov Moscow State University, Institute of Mechanics, Russia
Abstract:
The generalized Cauchy type integrals which kernel depends on the difference of arguments are considered on the smooth contour. These integrals cover as potentials of double layer for second order elliptic equations as generalized Cauchy type integrals for first order elliptic systems on the plane. In the paper the sufficient conditions such that these integrals belong C n,μ up to the boundary are found.
Key words:
References:
- Мусхелишвили Н. И. Сингулярные интегральные уравнения. М.: Наука, 1968. 511 с.
- Миранда К. Уравнения с частными производными из эллиптического типа. М.: Изд-во иностр. лит., 1957.
- 977 reads