Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Akulich Y. V., Bryukhanov P. A., Merzlyakov M. V., Sotin A. V. The Constitutive Equations for the Bone Tissue Structural Adaptation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 2, pp. 54-61. DOI: 10.18500/1816-9791-2011-11-2-54-61

Published online: 
25.04.2011
Full text:
(downloads: 52)
Language: 
Russian
Heading: 
UDC: 
531/534:[57+61]

The Constitutive Equations for the Bone Tissue Structural Adaptation

Autors: 
Akulich Yurii Vladimirovich, Perm State National Research Polytechnical University, Russia
Bryukhanov Pavel Anatol'evich, Perm State National Research Polytechnical University, Russia
Merzlyakov M. V., Perm State National Research Polytechnical University, Russia
Sotin A. V., Perm State National Research Polytechnical University, Russia
Abstract: 

The constitutive relationships for cortical and trabecular bone tissue structural adaptation are offered. These constitutive equations connect the rate of change of the porous radius with the strain adaptive stimulus and the bone cells activation. The used approach takes account of bone cells activation and it is alternative to the known experimental Frost’s Basic Multicellular Units method. That approach allows spreading the cellular remodeling mechanism on the functional adaptation process.

References: 

1. Hegedus D.H., Cowin S.C. Bone remodeling II: small strain adaptive elasticity // J. of Elasticity. 1976. Vol. 6, No 4. P. 337–352. 2. Martin R.B. The effects of geometric feedback in the development of osteoporosis // J. of Biomechanics. 1972. Vol. 5. P. 447–455. 3. Демпстер Д.В. Ремоделирование кости // Риггз Б.Л., Мелтон III Л.Д. Остеопороз. M.; CПб.: Изд-во Бином, Невский диалект, 2000. С. 85–100. 4. Underwood E.E. Quantitative Stereology. Reading, MA: Addison-Wesley Publishing Co., 1970. 232 p. 5. Martin R.B. The usefulness of mathematical models for bone remodeling // Yearbook of Physical Anthropology. 1985. Vol. 28. P. 227–236. 6. Hart R.T., Davy D.T. Theories of bone modeling and remodeling // Bone mechanics / ed. S.C. Cowin. Bossa Raton: CRS Press, 1989. P. 253–277. 7. Hazelwood S.J., Martin R.B., Rashid M.M., Rodrigo J.J. The mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload // J. of Biomechanics. 2001. Vol. 34. P. 299– 308. 8. Frost H.M. Mathematical Elements of Lamellar Bone Remodeling. N.Y.: Springer, 1964. 246 p. 9. Кнетс И.В., Пфафрод Г.О., Саулгозис Ю.Ж. Деформирование и разрушение твердых биологических тканей. Рига: Зинатне, 1989. 317 с. 10. Акулич А.Ю., Акулич Ю.В., Денисов А.С. Определение параметров структуры губчатой кости проксимального отдела бедра человека по оптической плотности рентгенологического изображения // Известия вузов. Поволжский регион. Медицинские науки. 2007. No 1. С. 3–11. 11. Martin R.B., Burr D.B., Sharkey N.A. Skeletal Tissue Mechanics. N.Y.: Springer, 1998. 392 p. 12. Parfit A.M. Bone age, mineral density, and fatique damage // Calcified Tissue Intern. 1993. Vol. 53. P. 82– 86. 13. Cowin S.C. Structural adaption of bone // Applied Mechanics Review. 1990. (Supplement). Vol. 43, No 5. P. 126–133. 14. Jacobs C.R., Simo J.S., Beaupre G.S., Carter D.R. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations // J. of Biomechanics. 1997. Vol. 30, No 6. P. 603–613. 15. Cowin S.C., Weinbaum S., Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials // J. of Biomechanics. 1995. Vol. 28, No 11. P. 1117–1126. 16. Salzstein R.A., Pollack S.R. Electromechanical potentials in cortical bone - experimental analysis // J. of Biomechanics. 1987. Vol. 20. P. 271–280. 17. Weinbaum S., Cowin S.C., Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses // J. of Biomechanics. 1994. Vol. 27, No 3. P. 339–360. 18. Стецула В.И., Бруско А.Т. Механизм адаптационной перестройки костей // Структура и биомеханика скелетно-мышечной и сердечно-сосудистой систем позвоночных: сб. науч. тр. Киев: Наук. думка, 1984. C. 141–143. 19. Knothe-Tate M.L., Niederer P., Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading // Bone. 1998. No 22. P. 107–117. 20. Neidlinger-Wilke C., Stall I., Claes L., Brand R., Hoellen I., Rubenacker S., Arand M., Kinzl L. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF-3 release in response to cyclic strain // J. of Biomechanics. 1995. Vol. 28. P. 1411–1418. 21. Сотин А.В., Акулич Ю.В., Подгаец Р.М. Модель адаптивной перестройки кортикальной костной ткани // Рос. журн. биомеханики. 2001. Т. 5, No 1. С. 24–32. 22. Регирер С.А., Штейн А.А., Логвенков С.А. Свойства и функции костных клеток: биомеханические аспекты // Современные проблемы биомеханики. Механика роста и морфогенеза. М.: Изд-во Моск. ун-та, 2000. Вып. 10. C. 174–224. 23. Lanyon L.E. Functional strain in bone tissue as an objective and controlling stimulus for adaptive bone remodeling // J. of Biomechanics. 1997. Vol. 20, No 11. P. 1083–1093.