Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Tikhonov I. V., Sherstyukov V. B., Petrosova M. A. Gluing Rule for Bernstein Polynomials on the Symmetric Interval. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, vol. 15, iss. 3, pp. 288-299. DOI: 10.18500/1816-9791-2015-15-3-288-300, EDN: UKIVFF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
11.09.2015
Full text:
(downloads: 201)
Language: 
Russian
Heading: 
UDC: 
517.518.82
EDN: 
UKIVFF

Gluing Rule for Bernstein Polynomials on the Symmetric Interval

Autors: 
Tikhonov Ivan Vladimirovich, Lomonosov Moscow State University
Sherstyukov Vladimir Borisovich, National Research Nuclear University MEPhI
Petrosova Margarita Arsenovna, Moscow Pedagogical State University
Abstract: 

We study special laws that arise in a sequence of the Bernstein polynomials on a symmetric interval. In particular, we set the exact rule of regular pairwise coincidence (gluing rule) which is acting for the Bernstein polynomials of a piecewise linear generating function with rational abscissas of break points. The accuracy of this rule for convex piecewise linear generating functions is shown. The possibility of “random” gluing for the Bernstein polynomials in a non-convex case is noted. We give also some examples and illustrations.

References: 
  1. Lorentz G. G. Bernstein Polynomials. N.Y. : Chelsea Publ. Comp., 1986. xi+134 p.
  2. Виденский В. С. Многочлены Бернштейна : учеб. пособие к спецкурсу. Л. : ЛГПИ им. А. И. Герцена, 1990. 64 c.
  3. Davis P. J. Interpolation and Approximation. N.Y. : Dover, 1975. xvi+394 p.
  4. DeVore R. A., Lorentz G. G. Constructive Approximation. Berlin ; Heidelberg ; N.Y. : Springer–Verlag, 1993. x+450 p.
  5. Тихонов И. В., Шерстюков В. Б., Петросова М. А. Полиномы Бернштейна : старое и новое // Математический форум. Т. 8, ч. 1. Исследования по математическому анализу. Владикавказ : ЮМИ ВНЦ РАН и РСО-А, 2014. С. 126–175.
  6. Schoenberg I. J. On Variation Diminishing Approximation Methods // On Numerical Approximation. Proceedings of a Symposium conducted by the Math. Research Center US Army, University of Wisconsin, Madison, April 21–23, 1958 / ed. by R. E. Langer. Madison : University of Wisconsin Press, 1959. P. 249–274.
  7. Freedman D., Passow E. Degenerate Bernstein polynomials // J. Approx. Theory. 1983. Vol. 39, № 1. P. 89–92.
  8. Passow E. Some unusual Bernstein polynomials // Approximation Theory IV. Proc. Intern. Symposium on Approximation Theory Held at Texas A&M University, College Station, Texas, on January 10–14, 1983 / eds. C. K. Chui, L. L. Schumaker, J. D. Ward. N.Y. ; London : Academic Press, 1983. P. 649–652.
  9. Passow E. Deficient Bernstein polynomials // J. Approx. Theory. 1989. Vol. 59, № 3. P. 282–285.
  10. Koci ´c Lj. M., Della Veccia B. Degeneracy of positive linear operators // Facta Universitatis (Ni˘s). Ser. Mathematics and Informatics. 1998. Vol. 13. P. 59–72.
  11. Петухова Н. Ю., Тихонов И. В., Шерстюков В. Б. Свойство склеивания полиномов Бернштейна для кусочно-линейных непрерывных функций // Математика, информатика, физика в науке и образовании : сб. науч. трудов к 140-летию МПГУ. М. : Прометей, 2012. С. 81–82.
  12. Тихонов И. В., Шерстюков В. Б. Приближение модуля полиномами Бернштейна // Вестн. Челяб. гос. ун-та. Математика. Механика. Информатика. 2012. Т. 15, № 26. С. 6–40.
  13. Temple W. B. Stieltjes integral representation of convex functions // Duke Mathematical Journal. 1954. Vol. 21, № 3. P. 527–531.
  14. Aram˘a О. Rroprient˘at¸i privind monotonia s¸irului polinoamelor de interpolare ale lui S. N. Bernstein s¸i aplicarea lor la studiul aproxim˘arii funct¸iilor // Studii s¸i cercet˘ari de Matematic˘a (Cluj). 1957. Vol. 8, № 3–4. P. 195–210.
Received: 
22.04.2015
Accepted: 
27.08.2015
Published: 
30.09.2015