Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Zverev N. A., Zemskov A. V., Tarlakovsky D. V. Unsteady Electromagnetic Elasticity of Piezoelectrics Considering Diffusion. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 2, pp. 193-204. DOI: 10.18500/1816-9791-2020-20-2-193-204, EDN: HDYLNM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.06.2020
Full text:
(downloads: 287)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3
EDN: 
HDYLNM

Unsteady Electromagnetic Elasticity of Piezoelectrics Considering Diffusion

Autors: 
Zverev Nikolay Andreevich, Moscow Aviation Institute (National Research University)
Zemskov Andrei Vladimirovich, Moscow Aviation Institute (National Research University)
Tarlakovsky Dmitrii Valentinovich, Moscow Aviation Institute (National Research University)
Abstract: 

The paper considers a model of the linear theory of deformation of elastic continuum with diffusion and piezoelectric effect taken into account, which describes the relationship between mechanical deformations, mass transfer, and the internal electric field. A one-dimensional model of electromagnetic diffusion in a rectangular Cartesian coordinate system is used. At the present level, the methods of solving the corresponding initial-boundary value problems based on the application of the integral Laplace transform and decomposition into trigonometric Fourier series are described.Based on the solution of model problems, the effect of the fields coupling on the processes of dynamic deformation are shown. The results of the calculations are presented in analytical form and in the form of graphs.

References: 
  1. Afram A. Y., Khader S. E. 2D Problem for a Half-Space under the Theory of Fractional Thermoelastic Diffusion. American Journal of Scientific and Industrial Research, 2014, vol. 6, no. 3, pp. 47–57. DOI: https://doi.org/10.5251/ajsir.2015.6.3.47.57
  2. Atwa S. Y., Egypt Z. Generalized Thermoelastic Diffusion with Effect of Fractional Parameter on Plane Waves Temperature-Dependent Elastic Medium. Journal of Materials and Chemical Engineering, 2013, vol. 1, no. 2, pp. 55–74.
  3. Belova I. V., Murch G. E. Thermal and diffusion-induced stresses in crystalline solids. Journal of Applied Physics, 1995, vol. 77, no. 1, pp. 127–134.
  4. Choudhary S., Deswal S. Mechanical loads on a generalized thermoelastic medium with diffusion. Meccanica, 2010, vol. 45, pp. 401–413. DOI: https://doi.org/10.1007/s11012-009-9260-9
  5. Elhagary M. A. Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times. Acta Mech., 2011, vol. 218, pp. 205–215. DOI: https://doi.org/10.1007/s00707-010-0415-5
  6. El-Sayed A. M. A two-dimensional generalized thermoelastic diffusion problem for a halfspace. Mathematics and Mechanics of Solids, 2016, vol. 21, no. 9, pp. 1045–1060. DOI: https://doi.org/10.1177/1081286514549877
  7. Knyazeva A. G. Model of medium with diffusion and internal surfaces and some applied problems. Mater. Phys. Mech., 2004, vol. 7, no. 1, pp. 29–36.
  8. Kumar R., Chawla V. Green’s Functions in Orthotropic Thermoelastic Diffusion Media. Engineering Analysis with Boundary Elements, 2012, vol. 36, no. 8, pp. 1272–1277, DOI: https://doi.org/10.1016/j.enganabound.2012.02.017
  9. Olesiak Z. S., Pyryev Yu. A. A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. International Journal of Engineering Science, 1995, vol. 33, iss. 6, pp. 773–780.
  10. Pidstryhach Ya. S. Differential equations of the problem of thermodiffusion in a solid deformable isotropic body. Dopov. Akad. Nauk Ukr. RSR, 1961, no. 2, pp. 169–172 (in Ukrainian).
  11. Sherief H. H., El-Maghraby N. M. A Thick Plate Problem in the Theory of Generalized Thermoelastic Diffusion. Int. J. Thermophys., 2009, vol. 30, pp. 2044–2057. DOI: https://doi.org/10.1007/s10765-009-0689-9
  12. Aouadi M. Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion. Zeitschrift fur Angewandte Mathematik und Physik, 2005, vol. 57, no. 2, pp. 350–366. DOI: https://doi.org/10.1007/s00033-005-0034-5
  13. Deswal S., Kalkal K. A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion. International Journal of Thermal Sciences, 2011, vol. 50, no. 5, pp. 749–759. DOI: https://doi.org/10.1016/j.ijthermalsci.2010.11.016
  14. Tarlakovskii D. V., Vestyak V. A., Zemskov A. V. Dynamic Processes in Thermo-ElectroMagneto-Elastic and Thermo-Elasto-Diffusive Media. In: Hetnarski R. B. (eds.). Encyclopedia of Thermal Stresses. Vol. 6. Dordrecht, Heidelberg, New York, London, Springer, 2014, pp. 1064–1071. DOI: https://doi.org/10.1007/978-94-007-2739-7_609
  15. Zhang J., Li Y. A Two-Dimensional Generalized Electromagnetothermoelastic Diffusion Problem for a Rotating Half-Space. Hindawi Publishing Corporation Mathematical Problems in Engineering, 2014, vol. 2014, pp. 1–12, Article ID 964218. DOI: http://dx.doi.org/10.1155/2014/964218
  16. Chu J. L., Lee S. Diffusion-induced stresses in a long bar of square cross section. J. Appl. Phys., 1993, vol. 73, iss. 7, pp. 3211–3219.
  17. 17. Freidin A. B., Korolev I. K., Aleshchenko S. P., Vilchevskaya E. N Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int. J. Fract., 2016, vol. 202, no. 2, pp. 245–259. DOI: https://doi.org/10.1007/s10704-016-0155-1
  18. Hwang C. C., Chen K. M., Hsieh J. Y. Diffusion-induced stresses in a long bar under an electric field. J. Phys. D: Appl. Phys., 1994, vol. 27, no. 10, pp. 2155–2162. DOI: https://doi.org/10.1088/0022-3727/27/10/025
  19. Indeitsev D. A., Semenov B. N., Sterlin M. D. The Phenomenon of Localization of Diffusion Process in a Dynamically Deformed Solid. Doklady Physics, 2012, vol. 57, no. 4, pp. 171–173. DOI: https://doi.org/10.1134/S1028335812040052
  20. Zemskov A. V., Tarlakovskii D. V. Statement of the one-dimensional problem of thermoelectromagnetoelastic diffusion. Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred: materialy XXIV Mezhdunar. simpoziuma im. A. G. Gorshkova [Dynamic and Technological Problems of a Mechanics of Constructions and Continuous Mediums. Proc. XXIV Int. Symposium Dedicated to A. G. Gorshkov]. Vol. 2. Moscow, TRP, 2018, pp. 157–163 (in Russian).
  21. Davydov S. A., Zemskov A. V., Tarlakovskiy D. V. Surface Green’s function in nonstationary problems of thermomechanical diffusion. Problemy prochnosti i plastichnosti [Journal Problems of Strength and Plasticity], 2017, vol. 79, no. 1. pp. 38–47 (in Russian). DOI: https://doi.org/10.32326/1814-9146-2017-79-1-38-47
  22. Ditkin V. A., Prudnikov A. P. Spravochnik po operatsionnomu ischisleniyu [Handbook of operational calculus]. Moscow, Vysshaya shkola, 1965. 466 p. (in Russian).
  23. Zverev N. A, Zemskov A. V., Tarlakovskii D. V. One-dimensional problem of piezoelectric electromagnetic diffusion for a layer. Journal of Physics: Conference Series, 2018, no. 1129, 012040. DOI: https://doi.org/10.1088/1742-6596/1129/1/012040
  24. Bardzokas D. I., Zobnin A. I., Senik N. A., Fil’shtinskii M. L. Matematicheskoe modelirovanie v zadachakh mekhaniki svyazannykh polei: v 2 t. T. 1. Vvedenie v teoriyu p’ezoelektrichestva [Mathematical modeling in problems of mechanics of related fields: in 2 vols. Vol. 1. Introduction to the theory of piezoelectricity]. Moscow, KomKniga, 2005. 312 p. (in Russian).
Received: 
25.04.2019
Accepted: 
26.06.2019
Published: 
01.06.2020