For citation:
Modestov K. A., Shitikova M. V. Harmonic wave propagation in viscoelastic media modelled via fractional derivative models. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 2, pp. 214-230. DOI: 10.18500/1816-9791-2025-25-2-214-230, EDN: PVASPW
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
30.05.2025
Full text:
(downloads: 486)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.98
EDN:
PVASPW
Harmonic wave propagation in viscoelastic media modelled via fractional derivative models
Autors:
Modestov Konstantin A., Moscow State University of Civil Engineering
Shitikova Marina Vyacheslavovna, Moscow State University of Civil Engineering
Abstract:
In the present paper, harmonic waves propagating in 3D isotropic viscoelastic media are analyzed using the fractional derivative Kelvin – Voigt model, Maxwell model and standard linear solid model. Asymptotic values of the wave velocities, their coefficients of attenuation and logarithmic decrements have been found.
Key words:
Acknowledgments:
This research was carried out within the Scientific Programme of Moscow National Research University of Civil Engineering (project No. 36).
References:
- Rabotnov Yu. N. Creep problems in structural members. Amsterdam, North-Holland, 1969. (Russ. ed.: Moscow, Nauka, 2014. 752 p.).
- Christensen R. M. Theory of viscoelasticity: An introduction. New York, Academic Press, 1982. 364 p. (Russ. ed.: Moscow, Mir, 1974. 340 p.).
- Bland D. The theory of linear viscoelasticity. Oxford, New York, Pergamon Press, 1960. 125 p. (Russ. ed.: Moscow, Mir, 1965. 200 p.).
- Rabotnov Yu. N. Elementy nasledstvennoy mekhaniki tverdykh tel [Elements of hereditary solid mechanics]. Moscow, Nauka, 1980. 384 p. (in Russian).
- Lokshin A. A., Suvorova Yu. V. Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyat’yu [Mathematical theory of wave propagation in hereditary media]. Moscow, Moscow University Press, 1982. 151 p. (in Russian).
- Tschoegl N. W. The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin, Heidelberg, Springer-Verlag, 1989. 769 p. https://doi.org/10.1007/978-3-642-73602-5
- Rossikhin Yu. A., Shitikova M. V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews, 1997, vol. 50, iss. 1, pp. 15–67. https://doi.org/10.1115/1.3101682, EDN: LELUNP
- Mainardi F. Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London, Imperial College Press, 2010. 368 p. https://doi.org/10.1142/p614
- Holm S. Waves with power-law attenuation. Cham, Springer, 2019. 312 p. https://doi.org/10.1007/978-3-030-14927-7
- Shitikova M. V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A review. Mechanics of Solids, 2022, vol. 57, iss. 1, pp. 1–33. https://doi.org/10.3103/S0025654422010022, EDN: TXOLIR
- Shitikova M. V., Krusser A. I. Models of viscoelastic materials: A review on historical development and formulation. In: Giorgio I., Placidi L., Barchiesi E., Abali B. E., Altenbach H. (eds.) Theoretical analyses, computations, and experiments of multiscale materials. Advanced Structured Materials, vol. 175. Cham, Springer, 2022, pp. 285–326. https://doi.org/10.1007/978-3-031-04548-6_14, EDN: FPAUSU
- Konjik S., Oparnica L., Zorica D. Waves in fractional Zener type viscoelastic media. Journal of Mathematical Analysis and Applications, 2010, vol. 365, iss. 1, pp. 259–268. https://doi.org/10.1016/j.jmaa.2009.10.043
- Konjik S., Oparnica L., Zorica D. Waves in viscoelastic media described by a linear fractional model. Integral Transforms and Special Functions, 2011, vol. 22, iss. 4–5, pp. 283–291. https://doi.org/10.1080/10652469.2010.541039
- Atanacković T., Konjik S., Oparnica L., Zorica D. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstract and Applied Analysis, 2011, vol. 2011, pp. 1–32. https://doi.org/10.1155/2011/975694
- Oparnica L., Zorica D., Okuka A. Fractional Burgers wave equation. Acta Mechanica, 2019, vol. 230, pp. 4321–4340. https://doi.org/10.1007/s00707-019-02500-0
- Kossovich L. Yu., Sukholovskaya M. S. Solution of a problem about nonstationary longitudinal waves in a thin viscoelastic rod. Mechanics of Deformable Media, Collective volume. Saratov, Saratov State University Publ., 2002, iss. 14, pp. 93–98 (in Russian). EDN: SCOAAL
- Anofrikova N. S., Kossovich L. Yu., Chernenko V. P. Asymptotic methods of solution construction in the vicinity of wave fronts in a viscoelastic rod at large times. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, vol. 5, iss. 1, pp. 82–88 (in Russian). https://doi.org/10.18500/1816-9791-2005-5-1-82-88, EDN: POHBVX
- Cottone G., Di Paola M., Zingales M. Elastic waves propagation in 1D fractional non-local continuum. Physica E: Low-dimensional Systems and Nanostructures, 2009, vol. 42, iss. 2, pp. 95–103. https://doi.org/10.1016/j.physe.2009.09.006
- Brown T. S., Du S., Eruslu H., Sayas F.-J. Analysis of models for viscoelastic wave propagation. Applied Mathematics and Nonlinear Sciences, 2018, vol. 3, iss. 1, pp. 55–96. https://doi.org/10.21042/amns.2018.1.00006
- Meshkov S. I., Rossikhin Yu. A. Propagation of acoustic waves in a hereditary elastic medium. Journal of Applied Mechanics and Technical Physics, 1968, vol. 9, iss. 5, pp. 589–592. https://doi.org/10.1007/BF02614765, EDN: YMTUFJ
- Meshkov S. I., Rossikhin Yu. A. About the propagation of sound waves in elastic-inherited media. In: Vsesoyuznyy simpozium po rasprostraneniyu uprugikh i uprugo-plasticheskikh voln [All-Union symposium on the propagation of elastic and elasto-plastic waves]. Chisinau, Academy of Sciences of the Moldavian SSR, 1968, pp. 61–62 (in Russian). EDN: YUICAZ
- Meshkov S. I., Rossikhin Yu. A. On the propagation of sound waves in a viscoelastic medium, whose inherited properties are determined by weakly singular kernels. In: Volny v neuprugikh sredakh [Waves in non-elastic media]. Chisinau, Academy of Sciences of the Moldavian SSR, 1970, pp. 162–172 (in Russian). EDN: YROEGJ
- Landau L. D., Lifshits E. M. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka, 1965. 202 p. (in Russian).
Received:
10.08.2024
Accepted:
15.11.2024
Published:
30.05.2025
- 883 reads