Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Radchenko V. P., Glebov V. E. The effect of the geometric shape of an incision on the relaxation of residual stresses in a surface-hardened cylinder during thermal exposure. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 3, pp. 391-405. DOI: 10.18500/1816-9791-2025-25-3-391-405, EDN: MQEXGM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 730)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.376:621.787
EDN: 
MQEXGM

The effect of the geometric shape of an incision on the relaxation of residual stresses in a surface-hardened cylinder during thermal exposure

Autors: 
Radchenko Vladimir P., Samara State Technical University
Glebov Victor E., Samara State Technical University
Abstract: 

A computational method is proposed for predicting residual stress relaxation during high-temperature creep following prior surface plastic deformation of solid cylinders with square and V-shaped notches. A series of parametric simulations was performed for cylindrical specimens made of EI698 alloy (20 mm length, 3.76 mm radius) with various notch geometries: depths of $\{0.1; 0.3\}$ mm for square notches, and depths of $\{0.1; 0.3\}$ mm with opening angles of $\{1^\circ, 5^\circ, 15^\circ\}$ for V-notches. The study demonstrates that residual stress field calculations after notching a strengthened cylindrical specimen require an elastoplastic formulation. The steady-state creep law was employed to simulate residual stress relaxation at 700$^\circ$C over 100 hours. A parametric analysis of notch geometry effects on stress relaxation was conducted. Results indicate that after the complete loading cycle ''hardening treatment at 20$^\circ$C — thermal loading (heating) to 700$^\circ$C — 100-hour creep at 700$^\circ$C — thermal unloading (cooling) to 20$^\circ$C'', despite relaxation, significant compressive residual stresses remain. This confirms the effectiveness of surface plastic strengthening for components with the investigated notch types under high-temperature creep conditions.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 23-29-00434, https://rscf.ru/project/23-29-00434/).
References: 
  1. Birger I. A. Ostatochnye napryazheniya [Residual stresses]. Moscow, Mashgiz, 1963. 232 p. (in Russian).
  2. Grinchenko I. G. Uprochnenie detaley iz zharoprochnykh i titanovykh splavov [Hardening of parts made of heat-resistant and titanium alloys]. Moscow, Mashinostroenie, 1971. 120 p. (in Russian).
  3. Kudryavtsev I. V. Poverkhnostnyy naklep dlya povysheniya prochnosti i dolgovechnosti detaley mashin poverkhnostnym plasticheskim deformirovaniem [Surface strain hardening to increase the strength and durability of machine parts]. Moscow, Mashinostroenie, 1969. 100 p. (in Russian).
  4. Nozhnitskii Yu. A., Fishgoit A. V., Tkachenko R. I., Teplova S. V. Development and application of new GTE parts hardening methods based on plastic deformation of surface layers. Vestnik dvigatelestroeniya [Bulletin of Engine Building], 2006, iss. 2, pp. 8–16 (in Russian).
  5. Sulima G. N., Shuvalov V. A., Yagodkin Yu. D. Poverkhnostnyy sloy i ekspluatatsionnye svoystva detaley mashin [Surface layer and performance properties of machine parts]. Moscow, Mashinostroenie, 1988. 240 p. (in Russian).
  6. Odincov L. G. Uprochnenie i otdelka detaley poverkhnostnym plasticheskim deformirovaniem [Hardening and finishing of parts by surface plastic deformation]. Moscow, Mashinostroenie, 1987. 328 p. (in Russian).
  7. Ivanov S. I., Shatunov M. P., Pavlov V. F. The effect of residual stresses on the endurance of incised samples. Voprosy Prochnosti Elementov Aviatsionnyk Konstruktsiy [Khazanov Kh. S. (ed.) Problems of Strength of Elements of Aircraft Structures]. Kuibyshev, Kuibyshev Aviation Institute Publ., 1974, iss. 1, pp. 88–95 (in Russian).
  8. Mitryaev K. F., Egorov V. I., Malkov G. F., Ulanov B. N., Stepanov V. V. Increasing the fatigue strength of heat-resistant materials by diamond smoothing of the surface of the parts. Ostatochnye napryazheniya [Ivanov S. I. (ed.) Residual Stresses]. Kuibyshev, Kuibyshev Aviation Institute Publ., 1971, vol. 53, pp. 151–159 (in Russian).
  9. Pavlov V. F., Bukatyi A. S., Semenova O. Yu. Forecasting of the endurance limit of surface-hardened parts with stress concentrators. Vestnik mashinostroeniya, 2016, iss. 1, pp. 3–7 (in Russian). EDN: VTAEPK
  10. Pavlov V. F., Kirpichev V. A., Vakulyuk V. S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnennykh detaley po ostatochnym napryazheniyam [Prediction of fatigue resistance of surface-hardened parts by residual stresses]. Samara, SCN RAN Publ., 2012. 125 p. (in Russian). EDN: TAFJVZ
  11. Sazanov V. P. Analysis of the mechanism of fatigue crack arrest in a cylindrical notched specimen. VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2018, vol. 17, iss. 1, pp. 160–169 (in Russian). DOI: https://doi.org/10.18287/2541-7533-2018-17-1-160-169, EDN: UPOWMG
  12. Radchenko V. P., Kirpichyov V. A., Lunin V. V. Influence of air shot blasting and temperature exposure on residual stresses and fatigue strength of notched specimens from alloys V95 and D16T. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2011, iss. 3 (24), pp. 181–184 (in Russian). EDN: OZDDCH
  13. You C., Achintha M., He B. Y., Reed P. A. S. A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests. International Journal of Fatigue, 2017, vol. 103, pp. 99–111. DOI: https://doi.org/10.1016/j.ijfatigue.2017.05.023
  14. Soyama H. Comparison between shot peening, cavitation peening and laser peening by observation of crack initiation and crack growth in stainless steel. Metals, 2019. vol. 10, iss. 1, art. 63. DOI: https://doi.org/10.3390/met100110063, EDN: OLPPYZ
  15. Zhao X., Sun Z., Xu D., Liu Y. Local fatigue strength evaluation of shop peened 40Cr notched steel. Metals, 2018, vol. 128, iss. 9, art. 681. DOI: https://doi.org/10.3390/met8090681
  16. Takahashi K., Osedo H., Suzuki T., Fukuda S. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening. Engineering Fracture Mechanics, 2018, vol. 193, pp. 151–161. DOI: https://doi.org/10.1016/j.engfracmech.2018.02.013
  17. Fleury R., Nowell D. Evaluating the influence of residual stresses and surface damage on fatigue life of nickel superalloys. International Journal of Fatigue, 2017, vol. 105. pp. 27–33. DOI: https://doi.org/10.1016/j.ijfatigue.2017.08.015
  18. Bag A., Levesque M., Brochu M. Effect of shot peening on short crack propagation in 300M steel. International Journal of Fatigue, 2020, vol. 131, art. 105346. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105346, EDN: TDCZZK
  19. Nag Chaundhury J. Effect of heat treatment, pre-stress and surface hardening on fracture toughness of micro-alloyed steel. Journal of Materials Engineering and Performance, 2014, vol. 23, iss. 1, pp. 152–168. DOI: https://doi.org/10.1007/s11665-013-0709-6
  20. Radchenko V. P., Morozov A. P. Experimental study of the effect induced by air shot-blasting processing, thermal exposition and high cycle fatigue tests on physical and mechanical condition hardening layer of cylindrical samples of alloys V95 and D16T. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2010, iss. 5 (21), pp. 222–228 (in Russian). EDN: NCTNON
  21. Lin D. J., Fuh L. J., Chen C. Y., Chen W. C., Lin J. H. C., Chen C. C. Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process. Materials Science and Engineering: C, 2019, vol. 95, pp. 236–247. DOI: https://doi.org/10.1016/j.msec.2018.10.085, EDN: JOCCNC
  22. Maytorena-Sanchez A., Hernandez-Torres J., Lopez-Huerta F., Hernandez-Campos M. A., Zamora-Peredo L., Pacio-Castillo M., Serrano-De la Rosa L. E., Garcia-Gonzalez L. Analysis of the hardness and tribological properties of grade 2 titanium using the thermal oxidation process at different temperatures. Materials Letters, 2021, vol. 282, art. 128679. DOI: https://doi.org/10.1016/j.matlet.2020.128679, EDN: CQVOPZ
  23. Kravchenko B. A., Krutsilo V. G., Gutman G. N. Termoplasticheskoe uprochnenie – rezerv povysheniya prochnosti i nadyozhnosti detaley mashin [Thermoplastic hardening as a reserve for increasing the strength and reliability of machine parts]. Samara, SamSTU Publ., 2000. 216 p. (in Russian). EDN: TTRVCB
  24. Chekalova E., Zhuravlev A. Improving the durability of titanium alloy products through a combined hardening technology. Materials Today: Proceedings, 2020, vol. 38, pt. 4, pp. 1804–1809. DOI: https://doi.org/10.1016/j.matpr.2020.08.413, EDN: RDCCGQ
  25. Guo W., Wang H., Peng P., Song B., Zhang H., Shao T., Huan H., Qiao H., Qu G., Zhu D., Yan J. Effect of laser shock processing on oxidation resistance of laser additive manufacture Ti6Al4V titanium alloy. Corrosion Science, 2020, vol. 170, art. 108655. DOI: https://doi.org/10.1016/j.corsci.2020.108655, EDN: GDQQDH
  26. Tseytlin V. I., Kolotnikova O. V. Relaxation of residual stresses in turbine parts of GTE during operation. Problemy prochnosti [Durability Issues], 1980, iss. 3, pp. 6–11 (in Russian).
  27. Kolotnikova O. V. The effectiveness of hardening by methods of surface plastic deformation of parts operating at elevated temperatures. Problemy prochnosti [Durability Issues], 1983, iss. 2, pp. 112–114 (in Russian).
  28. Radchenko V. P., Saushkin M. N. Polzuchest’ i relaksatsiya ostatochnykh napryazheniy v uprochnyonnykh konstruktsiyakh [Creep and relaxation of residual stresses in strengthened structures]. Moscow, Mashinostroenie-1, 2005. 226 p. (in Russian).
  29. Radchenko V. P., Kocherov E. P., Saushkin M. N., Smyslov V. A. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, 2015, vol. 56, iss. 2, pp. 313–320. DOI: https://doi.org/10.1134/S0021894415020170, EDN: UGHRIL
  30. Radchenko V. P., Tsvetkov V. V, Saushkin M. N. Residual stress relaxation in a hardened cylinder under creep, loaded by an axial force, torque, and internal pressure. Journal of Applied Mechanics and Technical Physics, 2020, vol. 61, iss. 4, pp. 583–592. DOI: https://doi.org/10.1134/S0021894420040124, EDN: REDSOB
  31. Radchenko V. P., Derevyanka E. E. Kinetics of residual stresses in thin-walled cylindrical samples after bilateral surface hardening under creep conditions with strict restrictions on angular and axial linear displacements. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 2, pp. 227–240 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2023-23-2-227-240, EDN: VGQVUH
  32. Radchenko V. P., Tsvetkov V. V., Derevyanka E. E. Relaxation of residual stresses in a surface-hardened cylinder under creep conditions and rigid restrictions on linear and angular deformations. Mechanics of Solids, 2020, vol. 55, iss. 6, pp. 898–906. DOI: https://doi.org/10.3103/S0025654420660024, EDN: VVJDZI
  33. Radchenko V. P., Liberman A. E., Blokhin O. L. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, vol. 26, iss. 1, pp. 119–139 (in Russian). DOI: https://doi.org/10.14498/vsgtu1884, EDN: GFBZBC
  34. Radchenko V. P., Glebov V. E. A method for calculating the relaxation of residual creep stresses in a surface-hardened cylinder with a series of periodically arranged semicircular incisions under thermal exposure conditions. Mechanics of Solids, 2024, vol. 59, iss. 7, pp. 3735–3746. DOI: https://doi.org/10.1134/S0025654424606293, EDN: UYGCLY
  35. Radchenko V. P., Saushkin M. N., Pavlov V. F. Mathematical modeling of the stress-strain state in surface-hardened thin-walled tubes with regard to the residual shear stresses. Vestnik PNIPU. Mekhanika [Bulletin of PNIPU. Mechanics], 2019, iss. 1, pp. 138–150 (in Russian). DOI: https://doi.org/10.15593/perm.mech/2019.1.12, EDN: XKSCQS
  36. Sazanov V. P., Kirpichev V. A., Vakulyuk V. S., Pavlov V. F. The definition of initial deformations in the cylindrical parts surface layer by Finite Elements Modeling method using PATRAN/ NASTRAN program complex. Vestnik UGATU, 2015, vol. 19, iss. 2 (68), pp. 35–40 (in Russian). EDN: VYWUPR
  37. Sazanov V. P., Semеnova O. Yu., Kirpichev V. A., Vakulyuk V. S. Mathematical modeling of initial deformations in surface hardened parts for the choice of a reference specimen. Vestnik UGATU, 2016, vol. 20, iss. 3 (73), pp. 31–37 (in Russian). EDN: XBGSHT
  38. Pavlov V. F., Stoljarov A. K., Kirpichev V. A., Vakulyuk V. S. Raschet ostatochnykh napryazheniy v detalyakh s kontsentratorami napryazheniy po pervonachal’nym deformatsiyam [Calculation of residual stresses in parts with stress concentrators according to initial deformations]. Samara, SCN RAN Publ., 2008. 124 p. (in Russian).
  39. Radchenko V. P., Shishkin D. M., Saushkin M. N. Numerical solution of the problem of stress-strain state of a surface-hardened prismatic V-notched specimen in elastic and elastoplastic formulations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, vol. 27, iss. 3, pp. 491–508 (in Russian). DOI: https://doi.org/10.14498/vsgtu2017, EDN: CDEJKC
Received: 
15.10.2024
Accepted: 
20.11.2024
Published: 
29.08.2025