Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Цыбуля Л. М. Алгоритмический поиск целых абелевых корней многочлена с целыми абелевыми коэффициентами // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2024. Т. 24, вып. 2. С. 193-199. DOI: 10.18500/1816-9791-2024-24-2-193-199, EDN: XHDOSA

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
31.05.2024
Полный текст:
(downloads: 238)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
519.688
EDN: 
XHDOSA

Алгоритмический поиск целых абелевых корней многочлена с целыми абелевыми коэффициентами

Авторы: 
Цыбуля Лилия Михайловна, Московский педагогический государственный университет
Аннотация: 

В работе рассматриваются операции над целыми абелевыми числами ранга n. Такие числа по определению являются элементами поля комплексных чисел и имеют вид многочленов с целыми коэффициентами от заданного первообразного корня из единицы степени n, при этом степени таких многочленов ограничены функцией Эйлера φ(n). Приведен пример, показывающий, что внутри круга на комплексной плоскости можно найти бесконечно много целых абелевых чисел. Для  описанных операций, в частности, представлен алгоритм вычисления обратного для данного целого абелева числа ранга n, что позволяет рассматривать не только кольца таких чисел, но и поля целых абелевых чисел. Естественная арифметика, возникающая для таких алгебраических структур, приводит к вопросу об изучении многочленов с целыми абелевыми коэффициентами. Исследуется задача поиска корней таких многочленов. Предложен алгоритм нахождения целых абелевых корней многочленов над кольцом целых абелевых чисел. Этот алгоритм основан на выдвинутом предложении о том, что все корни заданного многочлена ограничены некоторой областью. Проведены компьютерные вычисления, подтверждающие статистическую верность предложения.

Благодарности: 
Идейным руководителем данного исследования был профессор А. В. Гришин (Московский педагогический государственный университет). Автор также весьма признателен А. А. Прокопцеву за помощь в компьютерных вычислениях.
Список источников: 
  1. Боревич З. И., Шафаревич И. Р. Теория чисел. Москва : Наука, 1985. 503 с.
  2. Гришин А. В. О периодической части группы невырожденных 2х2-матриц // Международная конференция, посвященная 90-летию кафедры высшей алгебры механико-математического факультета МГУ. Москва, 2019. С. 26.
  3. Гришин А. В., Цыбуля Л. М. О кручении в полной линейной группе и алгоритме диагонализации // Фундаментальная и прикладная математика. 2021. Т. 23, вып. 4. С. 55–71.
  4. Murty M. R., Esmond J. Problems in Algebraic Number Theory. New York : Springer New York, 2004. 369 p. (Graduate Texts in Mathematics, vol. 190). https://doi.org/10.1007/b138452
  5. Гришин А. В., Прокопцев А. А., Цыбуля Л. М. Алгебра и арифметика целых абелевых чисел и компьютерные вычисления // XIII Белорусская математическая конференция : материалы Междунар. науч. конф. (Минск, 22–25 ноября 2021 г.) : в 2 ч. Минск : Беларуская навука, 2021. Ч. 2. С. 38–39.
  6. Greenberg M. J. An elementary proof of the Kronecker –Weber theorem // The American Mathematical Monthly. 1974. Vol. 81, iss. 6. P. 601–607. https://doi.org/10.1080/00029890.1974.11993623
  7. Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре : Для физ.-мат. фак. ун-тов и пед. ин-тов. 10-е изд. Москва : Наука. Физматлит, 1972. 304 с.
Поступила в редакцию: 
31.10.2022
Принята к публикации: 
13.01.2023
Опубликована: 
31.05.2024