Математика

Спектральный метод Ильина установления свойств базисности и равномерной сходимости биортогональных разложений на конечном интервале

В работе обсуждаются основы спектрального метода В. А. Ильина на примере простого дифференциального оператора второго порядка на отрезке числовой прямой. Сформулирована первая теорема Ильина о безусловной базисности. Приведено ее подробное доказательство. Прослежена цепочка обобщений этой теоремы и сформулирована недавно установленная теорема о безусловной базисности для дифференциальных операторов с общими—интегральными—краевыми условиями. Продемонстрирована схема обоснования утверждений о равномерной сходимости биортогональных разложений функций с использованием метода Ильина.

Necessary and Sufficient Condition for an Orthogonal Scaling Function on Vilenkin Groups [ Необходимое и достаточное условие ортогональной масштабирующей функции на группах Виленкина]

Существуют несколько подходов к задаче построения ортогонального кратномасштабного анализа на группах Виленкина, но все они сводятся к поиску так называемой масштабирующей функции. В 2005 г. Ю. А. Фарков использовал так называемые «блокированные» множества, чтобы строить все возможные масштабирующие функции с компактным носителем и ограниченной частотной полосой для каждого набора неких параметров, его условия оказались необходимыми и достаточными. С. Ф. Лукомский, Ю. С. Крусс и Г. С.

Нелокальные краевые задачи в цилиндрической области для многомерного уравнения Лапласа

Корректные постановки краевых задач на плоскости для эллиптических уравнений методом теории аналитических функций комплексного переменного хорошо изучены. При исследовании аналогичных вопросов, когда число независимых переменных больше двух, возникают трудности принципиального характера. Весьма привлекательный и удобный метод сингулярных интегральных уравнений теряет свою силу из-за отсутствия сколько-нибудь полной теории многомерных сингулярных интегральных уравнений. Автором ранее изучены локальные краевые задачи в цилиндрической области для многомерных эллиптических уравнений.

Приближение непрерывных 2π-периодических кусочно-гладких функций дискретными суммами Фурье

Пусть N > 2 — некоторое натуральное число. Выберем на вещественной оси N равномерно расположенных точек tk = 2πk/N + u (0 6 k 6 N − 1). Обозначим через Ln,N(f) = Ln,N(f,x) (1 6 n 6 N/2) тригонометрический полином порядка n, обладающий наименьшим квадратичным отклонением от f относительно системы{tk}N−1 k=0 . Выберем m+1 точку −π = a0 < a1 < ... < am−1 < am = π, где m > 2, и обозначим Ω = {ai}m i=0.

On Inverse Problem for Differential Operators with Deviating Argument [Об обратной задаче для дифференциальных операторов с отклоняющимся аргументом]

Рассматриваются функционально-дифференциальные операторы второго порядка с постоянным запаздыванием. Установлены свойства их спектральных характеристик и исследуется нелинейная обратная спектральная задача, которая состоит в построении операторов по их спектрам. Доказана единственность решения обратной задачи и указана конструктивная процедура ее решения.

 

 

Эрмитова интерполяция на симплексе

В статье рассмотрена задача полиномиальной интерполяции и аппроксимации функций многих пере-менныхнаn-мерном симплексе в равномерной норме посредством многочленов 3-йстепени.Выбраны интерполяционные условия в терминах производных по направлениям ребер симплекса. В этих же терминах получены оценки отклонения производных многочлена от соответствующих производных интерполируемой функции в предположении,что интерполируемая функция имеет непрерывные производные по направлениям до 4-го порядка включительно.

Некоторые свойства 0/1-симплексов

Пусть n ∈ N, Q n = [0,1] n . Для n-мерного невырожденного симплекса S под σS понимается результат гомотетии S относительно центра тяжести с коэффициентом гомотетии σ. Положим ξ(S) = min{σ > 1 : Q n ⊂ σS}, ξ n = min{ξ(S) : S ⊂ Q n }. Через P обозначим интерполяционный проектор, действующий из C(Q n ) на пространство линейных функций от n переменных, узлы которого совпадают с вершинами симплекса S ⊂ Q n . Пусть kPk — норма P как оператора из C(Q n ) в C(Q n ), θ n = minkPk. и симплекса S ⊂ Q n . Пусть kPk — норма P как оператора из C(Q n ) в C(Q n ), θ n = minkPk.

Критерий принадлежности классу Wp^1 обобщенного из класса Lp решения волнового уравнения

В статье исследуется вопрос принадлежности обобщенного решения волнового уравнения различным функциональным пространствам. Рассмотрение классических решений накладывает существенные ограничения на исходные данные задачи. Но если исходить не из дифференциальных, а из интегральных уравнений,то класс решений, а значит, и класс исходных краевых задач, можно существенно расширить. Для решения краевой задачи для волнового уравнения,полученного методом учета волн, легко получить достаточное условие принадлежности тому или иному классу.

Нередуктивные однородные пространства, не допускающие нормальных связностей

Целью данной работы является классификация трехмерных нередуктивных однородных пространств, недопускающих нормальных связностей, самих связностей, их тензоров кривизны, кручения и алгебр голономии.Объектом исследования являются нередуктивные пространства и связности на них.Определены основные понятия: изотропно-точная пара, редуктивное пространство, аффинная связность, тензор кручения, тензор кривизны, алгебра голономии, нормальная связность. Локальное изучение однородных пространств равносильно исследованию пар, состоящих из алгебры Ли и ее подалгебры.

An Asymptotic Relation for Conformal Radii of Two Nonoverlapping Domains [Асимптотическое соотношение для конформных радиусов двух неналегающих областей]

В статье рассматривается семейство замкнутых жордановых кривых, заданных в полярной систем координат и непрерывнозависящих от параметра, и такое, что области, ограниченные эти микривыми, образуют возрастающее или убывающее семейство. Такое семейство областей описывается дифференциальным уравнением Левнера–Куфарева. Для рассмотренного случая получено интегральное представление для управляющей функции в этом уравнении.

Страницы