Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Севастьянов Л. А., Ловецкий К. П., Кулябов Д. С. Новый подход к формированию систем линейных алгебраических уравнений для решения обыкновенных дифференциальных уравнений методом коллокаций // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023. Т. 23, вып. 1. С. 36-47. DOI: 10.18500/1816-9791-2023-23-1-36-47, EDN: BFDVVG

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
01.03.2023
Полный текст:
(downloads: 1159)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
517.98
EDN: 
BFDVVG

Новый подход к формированию систем линейных алгебраических уравнений для решения обыкновенных дифференциальных уравнений методом коллокаций

Авторы: 
Севастьянов Леонид Антонович, Российский университет дружбы народов имени Патриса Лумумбы
Ловецкий Константин Петрович, Российский университет дружбы народов имени Патриса Лумумбы
Кулябов Дмитрий Сергеевич, Российский университет дружбы народов имени Патриса Лумумбы
Аннотация: 

Реализован новый алгоритм численного решения одномерных задач Коши и уравнений Пуассона, основанный на методе коллокации и представлении решения в виде разложения по полиномам Чебышева. Предлагается вместо обычного подхода, заключающегося в слиянии всех известных условий — дифференциальных (само уравнение) и начальных/ граничных — в одну систему приближенных линейных алгебраических уравнений (СЛАУ), перейти к методике решения задачи в несколько отдельных этапов. Вначале выделяются спектральные коэффициенты, определяющие «общее» решение исходной задачи. По методу коллокации определяются интерполяционные коэффициенты производной решения, а тем самым и коэффициенты разложения самого решения (кроме начальных). На этом этапе выбор удачного базиса, обладающего дискретной ортогональностью, дает возможность применения весьма эффективных алгоритмов поиска искомых коэффициентов. Трудоемкость приведения матрицы СЛАУ к диагональной форме становится эквивалентной сложности умножения чебышевской матрицы коэффициентов на вектор правой части системы. Затем коэффициенты разложения самого решения (кроме первых одного--двух) получаются с помощью умножения известной трехдиагональной матрицы интегрирования (обратной по отношению к матрице дифференцирования Чебышева) на вектор интерполяционных коэффициентов производной. На последнем этапе учет начальных/граничных условий выделяет «частное» искомое решение, однозначно доопределяя недостающие коэффициенты искомого разложения.

Благодарности: 
Работа выполнена при финансовой поддержке Программы стратегического академического лидерства РУДН.
Список источников: 
  1. Boyd J. P. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Books on Mathematics, 2013. 668 p.
  2. Mason J. C., Handscomb D. C. Chebyshev Polynomials. Chapman and Hall/CRC Press, 2002. 360 p. https://doi.org/10.1201/9781420036114
  3. Fornberg B. A Practical Guide to Pseudospectral Methods. New York : Cambridge University Press, 1996. 231 p. https://doi.org/10.1017/CBO9780511626357
  4. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The Art of Scientific Computing. 3rd ed. New York : Cambridge University Press, 2007. 1235 p.
  5. Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Berlin ; Heidelberg : Springer, 2011. 472 p. (Springer Series in Computational Mathematics, vol. 41). https://doi.org/10.1007/978-3-540-71041-7
  6. Olver S., Townsend A. A Fast and Well-Conditioned Spectral Method // SIAM Review. 2013. Vol. 55, iss. 3. P. 462–489. https://doi.org/10.1137/120865458
  7. Chandrasekaran S., Gu M. Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations // SIAM Journal on Matrix Analysis and Applications. 2003. Vol. 25, iss. 2. P. 373–384. https://doi.org/10.1137/S0895479899353373
  8. Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials // Numerical Algorithms. 2020. Vol. 83, iss. 1. P. 1–31. https://doi.org/10.1007/s11075-019-00668-z
  9. Zhang X., Boyd J. P. Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: Effects of different bases // Science China Mathematics. 2023. Vol. 66, iss. 1. P. 191–220. https://doi.org/10.1007/s11425-021-1974-x
  10. Boyd J. P., Gally D. H. Numerical experiments on the accuracy of the Chebyshev – Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials // Journal of Computational and Applied Mathematics. 2007. Vol. 205, iss. 1. P. 281–295. https://doi.org/10.1016/j.cam.2006.05.006
  11. Dutykh D. A Brief Introduction to Pseudo-spectral Methods: Application to Diffusion Problems. 2019. 55 p. URL: https://arxiv.org/pdf/1606.05432 (дата обращения: 30.05.2022).
  12. Dawkins P. Differential Equations. 2018. 524 p. URL: https://tutorial.math.lamar.edu/Classes/DE/DE.aspx (дата обращения: 30.05.2022).
Поступила в редакцию: 
14.06.2022
Принята к публикации: 
26.09.2022
Опубликована: 
01.03.2023