Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Садекова Е. Х. О приближении ограниченных функций тригонометрическими полиномами в метрике Хаусдорфа // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2023. Т. 23, вып. 2. С. 169-182. DOI: 10.18500/1816-9791-2023-23-2-169-182, EDN: JKUQAS

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
31.05.2023
Полный текст:
(downloads: 773)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
517.518.8
EDN: 
JKUQAS

О приближении ограниченных функций тригонометрическими полиномами в метрике Хаусдорфа

Авторы: 
Садекова Екатерина Халиловна, Национальный исследовательский ядерный университет «МИФИ»
Аннотация: 

Рассматривается задача о приближении в метрике Хаусдорфа ограниченной (не обязательно однозначной) $2\pi$-периодической функции $f$ тригонометрическими полиномами. Построение приближающего полинома проводится в несколько этапов. Сначала по функции $f$ строится подходящая кусочно-постоянная $2\pi$-периодическая функция $g$, обладающая свойством $\lambda$-монотонности, для которой получены оценки хаусдорфова уклонения от $f$, модуля непрерывности и вариации. Затем по функции $g$ строится $2\pi$-периодическая сплайн-функция $\varphi$ порядка $r$. Получена оценка производной $\varphi^{(r)}$ через модуль непрерывности функции $f$. На последнем этапе используется классическое неравенство Джексона для наилучшего приближения гладкой функции тригонометрическими полиномами. В итоге доказана точная по порядку оценка указанного отклонения функции $f$ в метрике Хаусдорфа с явно выписанной константой. По порядку оценка совпадает с известными результатами Б. Сендова и В. А. Попова, но лучше с точки зрения выбора константы.

Список источников: 
  1. Jackson D. Ueber die Genauigkeit der Ann aherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung. Inaugural–Dissertation. Gottingen, 1911. 99 S.
  2. Даугавет И. K. Введение в теорию приближений функций. Ленинград : ЛГУ, 1977. 185 с.
  3. Сендов Б. Х. Апроксимиране на функции с алгебрични полноми по отношение на едне метрика от хаусдорфовки тип // Годишник на Софийския университет. Физико-математически факултет. София : Наука и изкуство, 1962. Т. 55. С. 1–39.
  4. Долженко E. П., Севастьянов Е. А. О приближениях функций в хаусдорфовой метрике посредством кусочно монотонных (в частности, рациональных) функций // Математический сборник. 1976. Т. 101, № 4. С. 508–541.
  5. Веселинов В. М. Аппроксимирование функций при помощи тригонометрических полиномов относительно одной метрики хаусдорфовского типа // Mathematica. 1967. Т. 9, № 1. С. 185–199.
  6. Долженко E. П., Севастьянов Е. А. О зависимости свойств функций от скорости их приближения полиномами // Известия Академии наук СССР. Серия математическая. 1978. Т. 42, № 2. С. 270–304.
  7. Сендов Б. Х., Попов В. А. Точная асимптотика наилучшего приближения алгебраическими и тригонометрическими полиномами в метрике Хаусдорфа // Математический сборник. 1972. Т. 89, № 1. С. 138–147.
  8. Sendov B. Kh., Popov V. A. On a generalization of Jackson’s theorem for best approximation // Journal of Approximation Theory. 1973. Vol. 9, iss. 2. P. 102–111. https://doi.org/10.1016/0021-9045(73)90098-1
  9. Боянов Т. П. Точная асимптотика наилучшего хаусдорфова приближения классов функций с заданным модулем непрерывности // Сердика Българско математическо списание. 1980. Т. 6. С. 84–97.
Поступила в редакцию: 
01.04.2022
Принята к публикации: 
16.11.2022
Опубликована: 
31.05.2023