Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Математика

О разрешимости одного класса нелинейных интегральных уравнений Гаммерштейна на полуоси

В настоящей работе исследуется класс нелинейных интегральных уравнений на полуоси с некомпактным оператором Гаммерштейна. Предполагается, что ядро уравнения экспоненциально убывает на положительной части числовой оси. Уравнения такого рода возникают в различных областях естествознания. В частности, такие уравнения встречаются в теории переноса излучения в спектральных линиях, в математической теории пространственно-временного распространения эпидемии, в кинетической теории газов.

О рождении предельного цикла из петли сепаратрисы сшитого седло-узла

В статье рассматриваются динамические системы на плоскости, задаваемые непрерывными кусочно-гладкими векторными полями. Такие системы используются в качестве математических моделей реальных процессов с переключениями. Важной задачей является нахождение условий рождения периодических траекторий при изменении параметров. В работе описана бифуркация рождения  периодической траектории из петли сепаратрисы сшитого седло-узла — аналог классической бифуркации петли сепаратрисы седло-узла гладкой динамической системы.

Стохастическая модель диффузии инноваций, учитывающая изменение общего объема рынка

В статье предложена стохастическая математическая модель диффузии потребительских инноваций, учитывающая изменения во времени общего числа потенциальных покупателей инновационного товара. Построено стохастическое дифференциальное уравнение для случайной величины числа потребителей инновационного товара. Исследовано влияние случайных изменений числа потребителей на изменение общего объема рынка рассматриваемого товара.

К вопросу об аппроксимации класса C(0) компонент физических величин в криволинейных системах координат

В численных методах расчета прочности техносферных объектов широко используются аппроксимирующие выражения искомых величин через их узловые значения.

Об алгоритмах декодирования кодов Гоппы на случай ошибок и стираний

В 1978 г. Мак-Элис построил первую кодовую криптосистему с открытым ключом, которая основана на применении помехоустойчивых кодов. Данная криптосистема именно на основе кодов Гоппы считается перспективной и криптостойкой с учетом квантовых вычислений. При этом эффективные атаки на секретные ключи этой криптосистемы до сих пор не найдены. В работе исследуются алгоритмы декодирования кодов Гоппы на случай ошибок и стираний.

Теоремы единственности восстановления прообраза при вырожденных преобразованиях

При решении задач трехмерной реконструкции объектов по изображениям актуальной является задача определения условий, при которых такая реконструкция будет иметь ту или иную степень единственности. Именно такие условия позволяют применить, в частности, методы глубокого машинного обучения с использованием сверточных нейронных сетей для определения пространственной ориентации объектов или их составных частей. С математической точки зрения задача сводится к определению условий восстановления прообраза для преобразования проекции.

Новые точные решения для двумерной системы Бродуэлла

В  статье  рассмотрена дискретная кинетическая система Бродуэлла. Данная система является нелинейной гиперболической системой уравнений в частных производных. Двумерная система Бродуэлла представляет собой кинетическое уравнение Больцмана, и для этой модели импульс и энергия сохраняются. В кинетической теории газов система описывает движение частиц  на двумерной плоскости, при этом правая часть системы отвечает за парные столкновения частиц.

Двоичные базисные сплайны в кратномасштабном анализе

B-сплайны были введены Карри и Шёнбергом. Построенные на равномерной сетке и определенные в терминах сверток, такие сплайны порождают КМА Рисса. В статье рассмотрены сплайны $\varphi_n$, которые получаются  $n$-кратным интегрированием функции Уолша с номером $2^n-1$. Эти сплайны в статье названы двоичными базисными сплайнами. Ранее было доказано, что двоичные базисные сплайны образуют базис в пространстве функций, непрерывных на отрезке $[0, 1]$ и обращающихся в 0 за его пределами.

Гармонический анализ почти периодических на бесконечности функций в банаховых модулях

В статье рассматриваются однородные пространства функций, заданных на локально компактной абелевой группе и со значениями в комплексном банаховом пространстве. К ним относится ряд известных пространств, таких как пространства измеримых по Лебегу суммируемых функций, существенно ограниченных функций, ограниченных непрерывных функций, непрерывных исчезающих на бесконечности функций, пространства Степанова и Гельдера. Важной особенностью таких пространств является наличие в них структуры банаховых модулей, задаваемой сверткой функций.

Строение групп с циклическими коммутантами, неразложимых в подпрямое произведение групп

В статье изучаются конечные группы, неразложимые в подпрямое произведение групп (подпрямо неразложимые), коммутанты которых являются циклическими подгруппами. Доказано, что расширения примарной циклической группы с помощью любой подгруппы ее группы автоморфизмов полностью описывают строение непримарных конечных подпрямо неразложимых групп с циклическим коммутантом.

Страницы