Сообщение об ошибке

  • Notice: Undefined index: und в функции citing_article_block_content() (строка 152 в файле /www/izvestiya/sites/all/modules/custom/citing_an_article/citing_an_article.module).
  • Notice: Undefined index: und в функции citing_article_block_content() (строка 155 в файле /www/izvestiya/sites/all/modules/custom/citing_an_article/citing_an_article.module).
  • Notice: Undefined index: und в функции citing_article_block_content() (строка 200 в файле /www/izvestiya/sites/all/modules/custom/citing_an_article/citing_an_article.module).

Образец для цитирования:

Шерстюков В. Б. К проблеме Леонтьева о целых функциях вполне регулярного роста // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2013. Т. 13, вып. 2. С. 30-?.


Рубрика: 

К проблеме Леонтьева о целых функциях вполне регулярного роста

Аннотация: 

 Рассматривается произвольная целая функция экспоненциального типа, все нули которой просты и образуют последовательность с нулевым индексом конденсации. На множестве нулей такой функции ее производная растет в определенном смысле максимально быстро. Требуется выяснить, будет ли исходная функция обладать полной регулярностью роста. Эта задача, возникшая в теории представления аналитических функций рядами экспонент, была поставлена А. Ф. Леонтьевым более сорока лет назад и пока не решена. В настоящей работе показано, что означенная проблема решается положительно, если функция “не слишком мала” на некоторой прямой. 

Библиографический список

Леонтьев А. Ф. Об условиях разложимости ана-

литических функций в ряды Дирихле // Изв. АН

СССР. Сер. мат. 1972. Т. 36, № 6. С. 1282–1295. DOI:

10.1070/IM1972v006n06ABEH001918.

2. Левин Б. Я. Распределение корней целых функций.

М. : Гостехиздат, 1956. 632 с.

3. Леонтьев А. Ф. Ряды экспонент. М. : Наука, 1976.

536 с.

4. Леонтьев А. Ф. Целые функции. Ряды экспонент.

М. : Наука, 1983. 175 с.

5. Коробейник Ю. Ф. Представляющие системы //

УМН. 1981. Т. 36, № 1. С. 73–126. DOI: 10.1070/RM

1981v036n01ABEH002542.

6. Абанин А. В. Слабо достаточные множества и аб-

солютно представляющие системы : дис. . . . д-ра физ.-

мат. наук. Ростов н/Д, 1995. 268 с.

7. Братищев А. В. Один тип оценок снизу целых функ-

ций конечного порядка и некоторые приложения //

Изв. АН СССР. Сер. мат. 1984. Т. 48, № 3. С. 451–

475.

8. Коробейник Ю. Ф. Максимальные и γ-достаточные

множества. Приложения к целым функциям. II // Тео-

рия функций, функциональный анализ и их приложе-

ния. Харьков, 1991. В. 55. С. 23–34.

9. Шерстюков В. Б. К вопросу о γ-достаточных множе-

ствах // Сиб. мат. журн. 2000. Т. 41, № 4. С. 935–943.

DOI: 10.1007/BF02679704.

10. Шерстюков В. Б. Об одной задаче Леонтьева и

представляющих системах экспонент // Мат. замет-

ки. 2003. Т. 74, № 2. С. 301–313. DOI: 10.1023/

A:1025068527611.]

11. Шерстюков В. Б. Об одном подклассе целых функ-

ций вполне регулярного роста // Комплексный ана-

лиз. Теория операторов. Математическое моделирова-

ние. Владикавказ : Изд-во ВНЦ РАН, 2006. С. 131–138.

12. Шерстюков В. Б. О некоторых признаках полной

регулярности роста целых функций экспоненциального

типа // Мат. заметки. 2006. Т. 80, № 1. С. 119–130.

DOI: 10.1007/s11006-006-0115-6.

13. Братищев А. В. К одной задаче А. Ф. Леонтьева //

Докл. АН СССР. 1983. Т. 270, № 2. С. 265–267.

14. Мельник Ю. И. О представлении регулярных функ-

ций рядами типа рядов Дирихле // Исследование по

теории приближений функций и их приложения. Ки-

ев : Наук. думка, 1978. С. 132–141.

15. Мельник Ю. И. Об условиях сходимости рядов Ди-

рихле, представляющих регулярные функции // Мате-

матический анализ и теория вероятности. Киев : Наук.

думка, 1978. С. 120–123.

16. Мельник Ю. И. Об условиях разложимости регуляр-

ных функций в ряды экспонент // Всесоюз. симпозиум

по теории аппроксимации функций в комплексной об-

ласти : тез. докл. Уфа : БФ АН СССР, 1980. С. 94.

17. Братищев А. В. Базисы Кете, целые функции и их

приложения : дис. . . . д-ра физ.-мат. наук. Ростов н/Д,

1997. 248 с.

18. Ingham A. E. A note on Fourier transforms // J.

London Math. Soc. 1934. Vol. 9. P. 29–32.

19. Levinson N. Gap and density theorems. N. Y. : Amer.

Math. Soc., 1940. 246 p.

20. Седлецкий А. М. Классы аналитических преобразо-

ваний Фурье и экспоненциальные аппроксимации. М. :

Физматлит, 2005. 503 с.

21. Левин Б. Я. Почти периодические функции с огра-

ниченным спектром // Актуальные вопросы математи-

ческого анализа. Ростов н/Д : Изд-во Ростов. гос. ун-

та, 1978. С. 112–124.

 

 

Краткое содержание (на английском языке):