Для цитирования:
Баев А. Д., Бунеев С. С. Теорема о существовании и единственности решения одной краевой задачи в полосе для вырождающегося эллиптического уравнения высокого порядка // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2012. Т. 12, вып. 3. С. 8-17. DOI: 10.18500/1816-9791-2012-12-3-8-17
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн:
03.09.2012
Полный текст:
(downloads: 286)
Язык публикации:
русский
Рубрика:
УДК:
517.956
Теорема о существовании и единственности решения одной краевой задачи в полосе для вырождающегося эллиптического уравнения высокого порядка
Авторы:
Баев Александр Дмитриевич, Воронежский государственный университет
Бунеев Сергей Сергеевич, Елецкий государственный университет им. И. А. Бунина
Аннотация:
Доказана теорема о существовании и единственности решения краевой задачи в полосе для одного вырождающегося эллиптического уравнения высокого порядка, вырождающегося на одной из границ полосы в уравнение третьего порядка по одной из переменных.
Ключевые слова:
Список источников:
- Келдыш М. В. О некоторых случаях вырождения уравнений эллиптического типа на границе области // Докл. АН СССР. 1951. Т. 77, № 2. С. 181–183.
- Олейник О. А. Об уравнениях эллиптического ти- па, вырождающихся на границе области // Докл. АН СССР. 1952. Т. 87, № 6. С. 885–887.
- Глушко В. П. Оценки в L2 и разрешимость общих граничных задач для вырождающихся эллиптических уравнений второго порядка // Тр. Моск. мат. о-ва. 1970. Т. 23. С. 113–178.
- Рукавишников В. А., Ереклинцев А. Г. О коэрци- тивности Rν-обобщенного решения первой краевой за- дачи с согласованным вырождением исходных данных // Дифференц. уравнения. 2005. Т. 41, № 12. С. 1680– 1689.
- Вишик М. И., Грушин В. В. Краевые задачи для эл- липтических уравнений, вырождающихся на границе области // Мат. сб. 1969. Т. 80 (112), вып. 4. С. 455– 491.
- Вишик М. И., Грушин В. В. Вырождающиеся эллип- тические дифференциальные и псевдодифференциаль- ные операторы // УМН. 1970. Т. 25, вып. 4. С. 29–56.
- Глушко В. П. Теоремы разрешимости краевых за- дач для одного класса вырождающихся эллиптиче- ских уравнений высокого порядка // Дифференциаль- ные уравнения с частными производными : тр. семи- нара акад. С. Л. Соболева. № 2. Новосибирск, 1978. С. 49–68.
- Глушко В. П. Априорные оценки решений крае- вых задач для одного класса вырождающихся эллип- тических уравнений высокого порядка / Воронеж. гос. ун-т. Воронеж, 1979. 47 с. Деп. в ВИНИТИ 27.03.79, № 1048-79.
- Левендорский С. З. Краевые задачи в полупростран- стве для квазиэллиптических псевдодифференциаль- ных операторов, вырождающихся на границе // Мат. сб. 1980. Т. 111 (153), вып. 4. С. 483–501.
- Исхоков С. А. О гладкости решения эллиптического уравнения с нестепенным вырождением // Докл. АН. 2001. Т. 378, № 3. С. 306–309.
- Баев А. Д. Качественные методы теории краевых задач для вырождающихся эллиптических уравнений. Воронеж, 2008. 240 с.
- Баев А. Д. Об одной краевой задаче в полосе для вырождающегося эллиптического уравнения высокого порядка // Вестн. Самарск. гос. ун-та. Сер. Естеств. науки. 2008. № 3 (62). С. 27–39.
- Баев А. Д. Об общих краевых задачах в полупро- странстве для вырождающихся эллиптических уравне- ний высокого порядка // Докл. АН. 2008. Т. 422, № 6. С. 727–728.
- Глушко В. П. Линейные вырождающиеся диффе- ренциальные уравнения. Воронеж, 1972. 193 с. 15. Лионс Ж., Мадженес Э. Неоднородные граничные задачи и их приложения. М., 1971. 371 с.
- 1288 просмотров