Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Юрко В. А. Единственность восстановления дифференциальных операторов произвольных порядков на некомпактных пространственных сетях // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2012. Т. 12, вып. 2. С. 33-41. DOI: 10.18500/1816-9791-2012-12-2-33-41

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
21.05.2012
Полный текст:
(downloads: 292)
Язык публикации: 
русский
Рубрика: 
УДК: 
517.984

Единственность восстановления дифференциальных операторов произвольных порядков на некомпактных пространственных сетях

Авторы: 
Юрко Вячеслав Анатольевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

 Исследуется обратная спектральная задача для дифференциальных операторов произвольных порядков на некомпактных графах. Доказана теорема единственности восстановления потенциалов по матрицам Вейля. 

Список источников: 
  1. Belishev M. I. Boundary spectral inverse problem on a class of graphs (trees) by the BC method // Inverse Problems. 2004. Vol. 20. P. 647–672.
  2. Yurko V. A. Inverse spectral problems for Sturm– Liouville operators on graphs // Inverse Problems. 2005. Vol. 21. P. 1075–1086.
  3. Brown B. M., Weikard R. A Borg–Levinson theorem for trees // Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2005. Vol. 461, № 2062. P. 3231–3243.
  4. Yurko V. A. Inverse problems for Sturm–Liouville operators on bush-type graphs // Inverse Problems. 2009. Vol. 25, № 10, 105008. 14 p.
  5. Yurko V. A. An inverse problem for Sturm–Liouville operators on A-graphs // Applied Math. Letters. 2010. Vol. 23, № 8. P. 875–879.
  6. Yurko V. A. Inverse spectral problems for differential operators on arbitrary compact graphs // J. of Inverse and Ill-Posed Proplems. 2010. Vol. 18, № 3. P. 245–261.
  7. Юрко В. А. Обратная спектральная задача для пучков дифференциальных операторов на некомпакт- 40 Научный отдел В. А. Юрко. Единственность восстановления дифференциальных операторов ных пространственных сетях // Диф. уравнения. 2008. Т. 44, № 12. С. 1658–1666.
  8. Герасименко Н. И. Обратная задача рассеяния на некомпактном графе // ТМФ. 1988. Т. 74, № 2. С. 187– 200.
  9. Yurko V. A. An inverse problem for higher-order differential operators on star-type graphs // Inverse Problems. 2007. Vol. 23, № 3. P. 893–903.
  10. Юрко В. А. Обратные задачи для дифференциаль- ных операторов произвольных порядков на деревьях // Мат. заметки. 2008. Т. 83, вып. 1. С. 139–152.
  11. Марченко В. А. Операторы Штурма–Лиувилля и их приложения. Киев: Наук. думка, 1977.
  12. Левитан Б. М. Обратные задачи Штурма–Лиувил- ля. М. : Наука, 1984.
  13. Beals R., Deift P., Tomei C. Direct and Inverse Scattering on the Line // Math. Surveys and Monographs. Vol. 28. Amer. Math. Soc. Providence : RI, 1988.
  14. Yurko V. A. Inverse Spectral Problems for Differential Operators and their Applications. Amsterdam : Gordon and Breach, 2000.
  15. Yurko V. A. Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series. Utrecht : VSP, 2002. 16. Юрко В. А. Введение в теорию обратных спектраль- ных задач. М. : Физматлит, 2007. 17. Наймарк М. А. Линейные дифференциальные опе- раторы. М. : Наука, 1969.
  16. Freiling G., Yurko V. A. Inverse problems for differential operators on graphs with general matching conditions // Applicable Analysis. 2007. Vol. 86, № 6. P. 653–667. Математика