Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


обратные спектральные задачи

Дифференциальные операторы на графе с циклом

Исследуется обратная задача спектрального анализа для дифференциальных операторов Штурма – Лиувилля на графе с циклом. Основное внимание уделяется наиболее важной нелинейной обратной задаче восстановления коэффициентов дифференциальных уравнений при условии, что структура графа известна априори. Используются стандартные условия склейки во внутренних вершинах и краевые условия Робина в граничных вершинах.

Единственность восстановления дифференциальных операторов произвольных порядков на некомпактных пространственных сетях

 Исследуется обратная спектральная задача для дифференциальных операторов произвольных порядков на некомпактных графах. Доказана теорема единственности восстановления потенциалов по матрицам Вейля. 

Об обратной задаче для дифференциальных операторов на графе-еже

 Исследуется обратная спектральная задача для дифференциальных операторов Штурма–Лиувилля на графе-еже с обобщенными условиями склейки во внутренних вершинах и с краевыми условиями Дирихле в граничных вершинах. Приведена теорема единственности восстановления потенциалов по заданным спектральным характеристикам, получено конструктивное решение обратной задачи. 

Единственность решения обратной задачи рассеяния для дифференциального уравнения переменного порядка на простейшем некомпактном графе с циклом

Исследуется обратная задача рассеяния для дифференциальных операторов переменных порядков на простейшем некомпактном графе с циклом. Приведена теорема единственности восстановления коэффициентов операторов по данным рассеяния.

Восстановление дифференциальных операторов на звездообразном графе с разными порядками на разных ребрах

Исследуется обратная спектральная задача для дифференциальных операторов переменных порядков на компактных звездообразных графах. Приведена теорема единственности восстановления потенциалов по матрицам Вейля. Получено конструктивное решение обратной задачи.  

Об обратной периодической задаче для центрально-симметричных потенциалов

Исследуется обратная спектральная задача для операторов Штурма–Лиувилля на конечном интервале с периодическими краевыми условиями в центрально-симметричном случае, когда потенциал симметричен относительно середины интервала. Обсуждается постановка обратной задачи, приводится алгоритм ее решения, а также необходимые и достаточные условия разрешимости этой нелинейной обратной задачи.

О восстановлении дифференциальных пучков на графе-кусте

Исследуется обратная задача спектрального анализа для дифференциальных пучков второго порядка на графе-кусте, который является произвольным компактным графом с одним циклом. Основное внимание уделяется наиболее важной нелинейной обратной задаче восстановления коэффициентов дифференциальных уравнений при условии, что структура графа известна априори. Используются стандартные условия склейки во внутренних вершинах и краевые условия Дирихле и Неймана в граничных вершинах.

Восстановление дифференциальных операторов на графе-кусте

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольном графе с циклом. Приведена конструктивная процедура решения и установлена его единственность.

Обратная задача спектрального анализа для матричного уравнения Штурма – Лиувилля

Исследуется обратная спектральная задача для матричного уравнения Штурма – Лиувилля на конечном интервале. Приведены свойства спектральных характеристик, получена конструктивная процедура решения обратной задачи и необходимые и достаточные условия ее разрешимости.  

Единственность решения обратной задачи для дифференциальных операторов на произвольных компактных графах

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольных компактных графах со стандартными условиями склейки во внутренних вершинах. Доказана теорема единственности восстановления потенциалов по спектрам.

Страницы