Для цитирования:
Kopylov Y. A. On Some Diagram Assertions in Preabelian and P-Semi-Abelian Categories [Копылов Я. А. О некоторых диаграммных утверждениях в предабелевых и P-полуабелевых категориях] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2020. Т. 20, вып. 4. С. 434-443. DOI: 10.18500/1816-9791-2020-20-4-434-443, EDN: RVAYDK
On Some Diagram Assertions in Preabelian and P-Semi-Abelian Categories
[О некоторых диаграммных утверждениях в предабелевых и P-полуабелевых категориях]
Как известно, многие важные аддитивные категории функционального анализа и алгебры неабелевы. Многие классические диаграммные утверждения, справедливые в абелевых категориях, оказываются неверны в более общих аддитивных категориях без дополнительных предположений о свойствах морфизмов рассматриваемых диаграмм. Это, в частности, относится к так называемой лемме о змее, или Ker-Coker-последовательности. В статье получена теорема о диаграмме, обобщающей классическую ситуацию леммы о змее в контексте категорий, полуабелевых в смысле Паламодова. Известно также, что уже в P-полуабелевых категориях не все ядра (соответственно, коядра) полустабильны, т. е. стабильны относительно универсальных (соответственно, коуниверсальных) квадратов. Мы доказываем предложение, показывающее, как неполустабильные ядра и коядра могут возникнуть в общих предабелевых категориях/
- Kopylov Ya. A., Kuz′minov V. I. On the Ker-Coker-sequence in a semiabelian category. Siberian Math. J., 2000, vol. 41, no. 3, pp. 509–517. DOI: https://doi.org/10.1007/BF02674106
- Kopylov Ya. A., Kuz′minov V. I. The Ker-Coker-sequence and its generalization in some classes of additive categories. Siberian Math. J., 2009, vol. 50, no. 1, pp. 86–95. DOI: https://doi.org/10.1007/s11202-009-0010-y
- Grandis M. On the categorical foundations of homological and homotopical algebra. Cah. Topol. G´eom. Diff´er. Cat´eg., 1992, vol. 33, no. 2, pp. 135–175.
- Bucur I., Deleanu A. Introduction to the Theory of Categories and Functors. London, New York, Sydney, Interscience Publ., John Wiley & Sons, Ltd., 1968. 224 p.
- Raıkov D. A. Semiabelian categories. Soviet Math. Dokl., 1969, vol. 10, pp. 1242–1245.
- Palamodov V. P. Homological methods in the theory of locally convex spaces. Russ. Math. Surv., 1971, vol. 26, iss. 1, pp. 1–64. DOI: http://dx.doi.org/10.1070/RM1971v026n01ABEH003815
- Nomura Y. Induced morphisms for Lambek invariants of commutative squares. Manuscr. Math., 1971, vol. 4, iss. 3, pp. 263–275. DOI: https://doi.org/10.1007/BF01190280
- Eckmann B., Hilton P. J. Exact couples in an abelian category. J. Algebra, 1966, vol. 3, pp. 38–87. DOI: https://doi.org/10.1016/0021-8693(66)90019-6
- Kuz′minov V. I., Cherevikin A. Yu. Semiabelian categories. Siberian Math. J., 1972, vol. 13, no. 6, pp. 895–902. DOI: https://doi.org/10.1007/BF00971865
- Yakovlev A. V. Homological algebra in pre-Abelian categories. J. Math. Sci., 1982, vol. 19, iss. 1, pp. 1060–1067. DOI: https://doi.org/10.1007/BF01476122
- Rump W. Almost abelian categories. Cah. Topol. G´eom. Diff´er. Cat´eg., 2001, vol. 42, no. 3, pp. 163–225.
- Kopylov Ya. A., Wegner S.-A. On the notion of a semi-abelian category in the sense of Palamodov. Appl. Categor. Struct., 2012, vol. 20, pp. 531–541. DOI: https://doi.org/10.1007/s10485-011-9249-0
- Schneiders J.-P. Quasi-abelian categories and sheaves. M´emoires de la Soci´et´e Math´ematique de France, Ser. 2, 1999, no. 76, 144 p. DOI: https://doi.org/10.24033/msmf.389
- Bonet J., Dierolf S. The pullback for bornological and ultrabornological spaces. Note Mat., 2006, vol. 25, no. 1, pp. 63–67. DOI: https://doi.org/10.1285/i15900932v25n1p63
- Rump W. A counterexample to Ra˘ıkov’s conjecture. Bull. Lond. Math. Soc., 2008, vol. 40, iss. 6, pp. 985–994. DOI: https://doi.org/10.1112/blms/bdn080
- Rump W. Analysis of a problem of Raikov with applications to barreled and bornological spaces. J. of Pure Appl. Algebra, 2011, vol. 215, iss. 1, pp. 44–52. DOI: https://doi.org/10.1016/j.jpaa.2010.02.031
- Wengenroth J. The Raikov conjecture fails for simple analytical reasons. J. Pure Appl. Algebra, 2012, vol. 216, iss. 7, pp. 1700–1703. DOI: https://doi.org/10.1016/j.jpaa.2012.01.007
- Kelly G. M. Monomorphisms, epimorphisms, and pull-backs. J. Austral. Math. Soc., 1969, vol. 9, pp. 124–142. DOI: https://doi.org/10.1017/S1446788700005693
- Gelfand I. M., Manin Yu. I. Methods of Homological Algebra. Springer Monographs in Mathematics. Berlin, Springer-Verlag, 2003. 372 p.
- Kopylov Ya. A., Kuz′minov V. I. Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category. Siberian Adv. Math., 2003, vol. 13, no. 3, pp. 72–80.
- Kopylov Ya. A. Homology in P-semi-abelian categories. Sci. Ser. A Math. Sci. (N.S.), 2009, vol. 17, pp. 105–114.
- Kopylov Ya. A. On the homology sequence in a P-semi-abelian category. Sib. Elektron. Mat. Izv., 2012, vol. 9, pp. 190–200.
- Makarov B. M. Some pathological properties of inductive limits of B-spaces. Uspekhi Mat. Nauk, 1963, vol. 18, iss. 3 (111), pp. 171–178 (in Russian).
- 1247 просмотров