Для цитирования:
Лошкарева Е. А., Гладышев Ю. А., Малышев Е. Н. Применение метода обобщенных степеней для построения решений кватернионного варианта системы Коши – Римана // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2023. Т. 23, вып. 1. С. 11-23. DOI: 10.18500/1816-9791-2023-23-1-11-23, EDN: ZMDMGI
Применение метода обобщенных степеней для построения решений кватернионного варианта системы Коши – Римана
В настоящей статье указан один из способов решения обобщенной системы Коши – Римана для кватернионных функций в восьмимерном пространстве. В предыдущих работах были изучены некоторые классы решений этой системы и заявлено, что существует возможность использования метода обобщенных степеней для построения решений этой системы дифференциальных уравнений. Показано, что решение поставленной задачи может быть сведено к нахождению двух произвольных кватернионных гармонических функций в восьмимерном пространстве. Все 8 компонент этих функций $\varphi ,\psi$ должны быть гармоническими функциями, т.е. быть дважды непрерывно дифференцируемы по всем восьми действительным переменным $x_i$, $y_i$, где $i = \overline {1,4} $. В настоящей статье рассмотрен параметрический метод обобщенных степеней, который применим к отдельным уравнениям второго и более высоких порядков.
- Гладышев Ю. A. О некоторых классах решений обобщенной системы Коши – Римана // Проблемы математического анализа. 2021. Т. 109. С. 59–64.
- Moisil G. Sur les quaternions monogenes // Bulletin of Mathematical Sciences. 1931. Vol. 55. P. 168–174.
- Fueter R. On the theory of regular functions of a quaternion variable // Monatshefte fur Mathematik und Physik. 1936. Vol. 43. P. 69–74. https://doi.org/10.1007/BF01707588
- Мисюра Н. Е. Кватернионные модели в кинематике и динамике твердого тела : учебное пособие. Екатеринбург : Изд-во Уральского ун-та, 1961. 260 с.
- Берс Л. Математические основы дозвуковой и околозвуковой газовой динамики. Москва : Изд-во иностранной литературы, 1961. 206 с.
- Bers L., Gelbart А. On a class of differential equations in mechanics of continua // Quarterly of Applied Mathematics. 1943. Vol. 1. P. 168–188. https://doi.org/10.1090/qam/8556
- Bers L., Gelbart А. On a class of functions defined by partial differential equations // Transactions of the American Mathematical Society. 1944. Vol. 56, iss. 1. P. 67–93. https://doi.org/10.2307/1990278
- Ландау Л. Д., Лифшиц Е. М. Теоретическая физика : в 2 т. Т. 2. Теория поля. Москва : Наука, 1973. 504 с.
- Гладышев Ю. А., Лошкарева Е. А. О методах построения комплексных обобщенных степеней Берса // Вестник Калужского университета. 2020. № 2 (47). С. 77–80. EDN: ZLPPKC
- Калманович В. В., Степович М. А., Серегина Е. В. О численном решении задач тепломассопереноса с использованием матричного метода и метода обобщенных степеней Берса // Теоретические основы и конструирования численных алгоритмов решения задач математической физики : тезисы докладов ХХII Всероссийской конференции, посвященной памяти К. И. Бабенко. Москва : Институт прикладной математики им. М. В. Келдыша РАН, 2018. С. 51–52. EDN: YLOPJJ
- Калманович В. В., Степович М. А. О возможности совместного применения матричного метода и аппарата Берса к моделированию процессов тепломассопереноса, обусловленного электромагнитным излучением в многослойной планарной среде // XXV Международная научно-техническая конференция и школа по фотоэлектронике и приборам ночного видения : труды конференции. Москва : НПП Орион, 2018. С. 491–494.
- Куликов А. Н., Горбунов А. К., Силаева Н. А., Коржавый А. П. Моделирование поведения гидродинамической дисперсии с помощью решения краевых задач // Наукоемкие технологии. 2021. Т. 22, № 6. С. 46–53. https://doi.org/10.18127/j19998465-202106-05
- Калманович В. В., Степович М. А. О совместном применении матричного метода и аппарата обобщенных степеней Берса для математического моделирования процессов тепломассопереноса в полупроводниковых метериалах электронной техники // Проблемы разработки перспективных микро- и наноэлектронных систем. 2018. № 3. С. 194–201. https://doi.org/10.31114/2078-7707-2018-3-194-201
- Widder D. V. Some analogies from classical analysis in the theory of heat conduction // Archive for Rational Mechanics and Analysis. 1966. Vol. 21, iss. 2. P. 108–113. https://doi.org/10.1007/BF00266570
- Жуков В. П., Барочкин А. Е., Боброва М. С., Беляков А. Н., Шувалов С. И. Матричный метод решения обратной задачи теплопередачи в теплообменных аппаратах // Вестник Ивановского государственного энергетического университета. 2021. № 2. С. 62–69. https://doi.org/10.17588/2072-2672.2021.2.062-069
- Барочкин А. Е. Матричный метод решения обратной задачи теплопередачи в контактных аппаратах с учетом фазового перехода в теплоносителях // Вестник Ивановского государственного энергетического университета. 2021. № 5. С. 68–75. https://doi.org/10.17588/2072-2672.2021.5.068-075
- Гладышев Ю. А., Лошкарева Е. А. Об использовании метода параметрических обобщенных степеней для построения решений одного класса дифференциальных уравнений // Воронежская зимняя математическая школа С. Г. Крейна – 2022 : материалы международной конференции / под ред. В. А. Костина. Воронеж : Издательский дом ВГУ, 2022. С. 67–71. URL: https://vzms.kmm-vsu.ru/files/vzms2022.pdf (дата обращения: 25.03.2022).
- Бринкман Г. Применение спинорных инвариантов в атомной физике. Москва : Изд-во иностранной литературы, 1959. 96 с.
- 1110 просмотров