Для цитирования:
Ignatyev M. Y. Reconstruction formula for differential systems with a singularity [Игнатьев М. Ю. Формула восстановления для систем дифференциальных уравнений с особенностью] // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2021. Т. 21, вып. 3. С. 282-293. DOI: 10.18500/1816-9791-2021-21-3-282-293, EDN: CGDNRR
Reconstruction formula for differential systems with a singularity
[Формула восстановления для систем дифференциальных уравнений с особенностью]
В работе изучаются некоторые аспекты теории рассеяния для сингулярных систем дифференциальных уравнений $y'-x^{-1}Ay-q(x)y=\rho By$, $x>0$ со спектральным параметром $\rho$, где $A,B, q(x), x\in(0,\infty)$ --- $n\times n$ матрицы, причем матрицы $A,B$ постоянны. В данной работе мы рассматриваем важный частный случай, когда матрица-функция $q(\cdot)$ является гладкой и $q(0)=0$. В этом случае для $q(\cdot)$ получено выражение в виде контурного интеграла, где ядро записывается в терминах решений типа Вейля рассматриваемой системы. Формулы такого типа играют важную роль в конструктивном решении обратных задач рассеяния: применение формул, где величины, стоящие в правой части, предварительно найдены из так называемого основного уравнения, является завершающим шагом процедуры решения. Для вывода указанных формул восстановления мы предварительно устанавливаем асимптотики решений типа Вейля при $\rho\to\infty$ с оценкой остаточного члена $o\left(\rho^{-1}\right)$.
- Brunnhuber R., Kostenko A., Teschl G. Singular Weyl – Titchmarsh – Kodaira theory for one-dimensional Dirac operators. Monatshefte fur Mathematik, 2014, vol. 174, pp. 515– 547. https://doi.org/10.1007/s00605-013-0563-5
- Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac operators. Journal of Mathematical Physics. 2007, vol. 48, 043501, 14 p.
- Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac and Schrodinger operators from two spectra. Journal of Mathematical Analysis and Applications, 2008, vol. 339, iss. 1, pp. 45–57. https://doi.org/10.1016/j.jmaa.2007.06.034
- Serier F. Inverse spectral problem for singular Ablowitz – Kaup – Newell – Segur operators on [0; 1]. Inverse Problems, 2006, vol. 22, no. 4, pp. 1457–1484. https://doi.org/10.1088/0266-5611/22/4/018
- Gorbunov O. B., Shieh C.-T., Yurko V. A., Dirac system with a singularity in an interior point. Applicable Analysis, 2016, vol. 95, iss. 11, pp. 2397–2414. https://doi.org/10.1080/00036811.2015.1091069
- Beals R., Coifman R. R. Scattering and inverse scattering for first order systems. Communications on Pure and Applied Mathematics, 1984, vol. 37, iss. 1, pp. 39–90. https://doi.org/10.1002/cpa.3160370105
- Zhou X. Direct and inverse scattering transforms with arbitrary spectral singularities. Communications on Pure and Applied Mathematics, 1989, vol. 42, iss. 7, pp. 895–938. https://doi.org/10.1002/cpa.3160420702
- Yurko V. A. Inverse spectral problems for differential systems on a finite interval. Results in Mathematics, 2006, vol. 48, no. 3–4, pp. 371–386. https://doi.org/10.1007/BF03323374
- Yurko V. A. On higher-order differential operators with a singular point. Inverse Problems, 1993, vol. 9, no. 4, pp. 495–502. https://doi.org/10.1088/0266-5611/9/4/004
- Yurko V. A. Method of Spectral Mappings in the Inverse Problem Theory. (Inverse and Ill-Posed Problems Series, vol. 31). Utrecht, VSP, 2002. 303 p. https://doi.org/10.1515/9783110940961
- Sibuya Y. Stokes phenomena. Bulletin of the American Mathematical Society, 1977, vol. 83, no. 5, pp. 1075–1077. https://doi.org/10.1090/S0002-9904-1977-14391-7
- Ignatyev M. Spectral analysis for differential systems with a singularity. Results in Mathematics, 2017, vol. 71, iss. 3–4, pp. 1531–1555. https://doi.org/10.1007/s00025-016-0605-0
- Ignatiev M. Yu. Asymptotics of solutions of some integral equations connected with differential systems with a singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 17–28. https://doi.org/10.18500/1816-9791- 2020-20-1-17-28
- Ignatiev M. Yu. On Weyl-type solutions of differential systems with a singularity. The case of discontinuous potential. Mathematical Notes, 2020, vol. 108, no. 6, pp. 814–826. https://doi.org/10.1134/S0001434620110243
- 1483 просмотра