Для цитирования:
Kuznetsova M. A. Asymptotic Formulae for Weight Numbers of the Sturm – Liouville Boundary Problem on a Star-shaped Graph [Кузнецова М. А. Асимптотические формулы для весовых чисел краевой задачи Штурма – Лиувилля на графе-звезде] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2018. Т. 18, вып. 1. С. 40-48. DOI: 10.18500/1816-9791-2018-18-1-40-48, EDN: YABQPZ
Asymptotic Formulae for Weight Numbers of the Sturm – Liouville Boundary Problem on a Star-shaped Graph
[Асимптотические формулы для весовых чисел краевой задачи Штурма – Лиувилля на графе-звезде]
В статье исследована краевая задача Штурма – Лиувилля на графе Γ определенного вида. Граф Γ имеет m ребер, смежных с одной внутренней вершиной, а остальные m вершин являются вершинами степени 1. Краевая задача на данном графе задается дифференциальными выражениями Штурма – Лиувилля с вещественными потенциалами, краевыми условиями Дирихле и стандартными условиями склейки. Определенная таким образом краевая задача имеет счетное множество собственных значений. Мы рассмотрим вычеты диагональных элементов матрицы Вейля в собственных значениях, которые назовем весовыми числами. Элементы матрицы Вейля являются мероморфными функциями с простыми полюсами в собственных значениях. Отметим, что весовые числа в данном случае являются обобщением весовых чисел оператора Штурма – Лиувилля на конечном интервале, которые определяются как обратные величины квадратов норм собственных функций. Эти числа вместе с собственными значениями играют роль спектральных данных для однозначного восстановления оператора. С помощью интегрирования по контурам будут получены асимптотические формулы для весовых чисел, в случае асимптотически близких собственных значений будем иметь формулы для сумм. Результаты могут быть использованы для анализа обратных спектральных задач на графах.
- Yang C.-F., Huang Z.-Y., Yang X.-P. Trace formulas for Schrödinger systems on graphs. Turkish J. Math., 2010, vol. 34, no. 2, pp. 181–196. DOI: https://doi.org/10.3906/mat-0811-7
- Berkolaiko G., Kuchment P. Introduction to Quantum Graphs. AMS, Providence, RI, 2013. 270 p.
- Pokorny Yu. V., Penkin O. M., Borovskikh A. V., Pryadiev V. L., Lazarev K. P., Shabrov S. A. Differentsial’nye uravneniia na geometricheskikh grafakh [Differential Equations on Geometrical Graphs]. Moscow, Fizmatlit, 2004. 272 p. (in Russian).
- Freiling G., Yurko V. A. Inverse Sturm–Liouville problems and their applications. New York, Nova Science, 2001. 305 p.
- Yurko V. A. On recovering Sturm–Liouville operators on graphs. Math. Notes, 2006, vol. 79, iss. 3–4, pp. 572–582. DOI: https://doi.org/10.4213/mzm2732
- Yurko V. A. Inverse spectral problems for differential operators on spatial networks. Russian Math. Surveys, 2016, vol. 71, no. 3, pp. 539–584. DOI: https://doi.org/10.4213/rm9709
- Bondarenko N. Spectral analysis for the matrix Sturm–Liouville operator on a finite interval. Tamkang J. Math., 2011, vol. 42, no. 3, pp. 305–327. DOI: https://doi.org/10.5556/j.tkjm.42.2011.305-327
- Pivovarchik V. Inverse problem for the Sturm–Liouville equation on a star-shaped graph. Math. Nachr., 2007, vol. 280, no. 1314, pp. 1595–1619. DOI: https://doi.org/10.1002/mana.200410567
- Möller M., Pivovarchik V. Spectral theory of operator pencils, Hermite–Biehler functions, and their applications. Cham, Birkhäuser, 2015. 412 p. DOI: https://doi.org/10.1007/978-3-319-17070-1
- Hardy G. H., Littlewood J. E., Polya G. Inequalities. London, Cambridge University Press, 1934. 456 p.
- 1234 просмотра