Для цитирования:
Прохоров Д. В., Украинский Д. В. Асимптотическое отношение гармонических мер сторон разреза // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2015. Т. 15, вып. 2. С. 160-166. DOI: 10.18500/1816-9791-2015-15-2-160-167, EDN: TXMFQT
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн:
11.06.2015
Полный текст:
(downloads: 136)
Язык публикации:
русский
Рубрика:
УДК:
517.54
EDN:
TXMFQT
Асимптотическое отношение гармонических мер сторон разреза
Авторы:
Прохоров Дмитрий Валентинович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Украинский Дмитрий Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация:
The article is devoted to the geometry of solutions to the chordal Löwner equation which is based on the comparison of singular solutions and harmonic measures for the sides of a slit in the upper half-plane generated by a driving term. An asymptotic ratio for harmonic measures of slit sides is found for a slit which is tangential to a straight line under a given angle, and for a slit with high order tangency to a circular arc tangential to the real axis.
Ключевые слова:
Список источников:
- Löwner K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann., 1923, vol. 89, no. 1–2, pp. 103–121.
- Lind J., Marshall D. E., Rohde S. Collisions and spirals of Loewner traces. Duke Math. J., 2010, vol. 154, no. 3, pp. 527–573.
- Hayman W. K., Kennedy P. B. Subharmonic Functions, vol. 1, London, New York, Academic Press, 1976.
- Earle C. J., Epstein A. L. Quasiconformal variation of slit domains. Proc. Amer. Math. Soc., 2001, vol. 129, no. 11, pp. 3363–3372.
- Prokhorov D., Zakharov A. Harmonic measures of sides of a slit perpendicular to the domain boundary. J. Math. Anal. Appl., 2012, vol. 394, no. 2, pp. 738–743.
- Kager W., Nienhuis B., Kadanoff L. P. Exact solutions for Loewner evolutions, J. Statist. Phys., 2004, vol. 115, no. 3–4, pp. 805–822.
- Rad´o T. Sur la repr´esentations conforme de domaines variables. Acta Sci. Math. (Szeged), 1922–1923, vol. 1, no. 3, pp. 180–186.
- Голузин Г. М. Геометрическая теория функций комплексного переменного. М. : Наука, 1966.
- Markushevich A. I. Sur la repr´esentations conforme des domaines `a fronti`eres variables. Rec. Math. [Mat. Sbornik] N.S., 1936, vol. 1(43), no. 6, pp. 863–886.
- Prokhorov D., Vasil’ev A. Singular and tangent slit solutions to the L¨owner equation. Analysis and Mathematical Physics, eds. D. Gustafsson, A. Vasil’ev. Berlin, Birkhauser, 2009, pp. 455–463.
- Ivanov G., Prokhorov D., Vasil’ev A. Non-slit and singular solutions to the L¨owner equation. Bull. Sci. Mathem., 2012, vol. 136, no. 3, pp. 328–341.
Поступила в редакцию:
20.01.2015
Принята к публикации:
29.05.2015
Опубликована:
30.06.2015
- 1014 просмотров