Для цитирования:
Хайрулин А. Р., Ракишева И. О., Кучумов А. Г., Голуб М. В., Шехмаметьев Р. М., Лазарьков П. В. Исследование влияния характеристик межсистемных шунтов на гемодинамические показатели и распределение кислорода // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2024. Т. 24, вып. 2. С. 254-274. DOI: 10.18500/1816-9791-2024-24-2-254-274, EDN: INFKKR
Исследование влияния характеристик межсистемных шунтов на гемодинамические показатели и распределение кислорода
Различные межсистемные шунты широко применяются при лечении новорожденных с врожденными пороками сердца и сниженным кровообращением легких. Установка шунта сопровождается высоким риском развития послеоперационных осложнений и летальности. Развитие некоторых осложнений возможно предсказать, используя методы математического моделирования, и скорректировать лечение. В данной работе исследована система «аорта – шунт – легочная артерия». Были проанализированы три варианта расположения шунта с разными диаметрами у трех пациентов. При исследовании полученных 27 вариантов использовались распространенные гемодинамические показатели (касательные напряжения у стенки, осредненные за сердечный цикл касательные напряжения, индекс колебаний касательных напряжений, относительное время пребывания и др.). На основе численного решения показана зависимость распределения кровотока в легочной артерии от расположения шунта. Следует отметить, что для разных пациентов место установки шунта отличается. Также было показано, что потери энергии шунтов диаметром 4 мм почти в два раза больше, чем у шунтов диаметром 3 мм. Индивидуальный подход к лечению каждого новорожденного, основанный на объективных данных, может существенно уменьшить число случаев детской смертности и повысить эффективность процесса реабилитации.
- O’Connor M. J., Ravishankar C., Ballweg J. A., Gillespie M. J., Gaynor J. W., Tabbutt S., Dominguez T. E. Early systemic-to-pulmonary artery shunt intervention in neonates with congenital heart disease // Journal of Thoracic and Cardiovascular Surgery. 2011. Vol. 142, iss. 1. P. 106–112. https://doi.org/10.1016/j.jtcvs.2010.10.033
- Petrucci O., O’Brien S. M., Jacobs M. L., Jacobs J. P., Manning P. B., Eghtesady P. Risk factors for mortality and morbidity after the neonatal Blalock – Taussig shunt procedure // Annals of Thoracic Surgery. 2011. Vol. 92, iss. 2. P. 642–652. https://doi.org/10.1016/j.athoracsur.2011.02.030
- Ahmad U., Fatimi S. H., Naqvi I., Atiq M., Moizuddin S. S., Sheikh Kh. B., Shahbuddin S., Naseem T. M., Javed M. A. Modified Blalock – Taussig shunt: Immediate and short-term follow-up results in neonates // Heart Lung and Circulation. 2008. Vol. 17, iss. 1. P. 54–58. https://doi.org/10.1016/j.hlc.2007.06.003
- Van Der Linde D., Konings E. E. M., Slager M. A., Witsenburg M., Helbing W. A., Takkenberg J. J. M., Roos-Hesselink J. W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis // Journal of the American College of Cardiology. 2011. Vol. 58, iss. 21. P. 2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025
- Yuan S. M., Jing H. Palliative procedures for congenital heart defects // Archives of Cardiovascular Diseases. 2009. Vol. 102, iss. 6–7. P. 549–557. https://doi.org/10.1016/j.acvd.2009.04.011
- Elella R. A., Umereta N., Alabari I., Al Ahmadi M., Al Wadai A. The short- and long-term effect of Blalock – Taussig shunt size on the outcome after first palliative surgery for cyanotic heart diseases // Annals of Saudi Medicine. 2014. Vol. 34, iss. 6. P. 494–498. https://doi.org/10.5144/0256-4947.2014.494
- Sasikumar N., Hermuzi A., Fan C. P. S., Lee K. J., Chaturvedi R., Hickey E., Honjo O., Van Arsdell G. S., Caldarone C. A., Agarwal A., Benson L. Outcomes of Blalock – Taussig shunts in current era: A single center experience // Congenital Heart Disease. 2017. Vol. 12, iss. 6. P. 808–814. https://doi.org/10.1111/chd.12516
- Sisli E., Tuncer O. N., Senkaya S., Dogan E., Sahin H., Ayik M. F., Atay Y. Blalock – Taussig shunt size: Should it be based on body weight or target branch pulmonary artery size? // Pediatric Cardiology. 2019. Vol. 40, iss. 1. P. 38–44. https://doi.org/10.1007/s00246-018-1958-9
- Zhong L., Zhang J.-M., Su B., Tan R. S., Allen J. C. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: Challenges and opportunities // Frontiers in Physiology. 2018. Vol. 9. http://dx.doi.org/10.3389/fphys.2018.00742
- Kelm M., Goubergrits L., Bruening J., Yevtushenko P., Fernandes J. F. Model-based therapy planning allows prediction of haemodynamic outcome after aortic valve replacement // Scientific Reports. 2017. Vol. 7. Art. 9897. https://doi.org/10.1038/s41598-017-03693-x
- Lesage R., Van Oudheusden M., Schievano S., Van Hoyweghen I., Geris L., Capelli C. Mapping the use of computational modelling and simulation in clinics: A survey // Frontiers in Medical Technology. 2023. Vol. 5. P. 1–10. https://doi.org/10.3389/fmedt.2023.1125524
- Zhang N., Yuan H., Chen X., Liu J., Zhou C., Huang M., Jian Q., Zhuang J. Hemodynamic of the patent ductus arteriosus in neonates with modified Blalock – Taussig shunts // Computer Methods and Programs in Biomedicine. 2020. Vol. 186. Art. 105223. https://doi.org/10.1016/j.cmpb.2019.105223
- Lagana K., Balossino R., Migliavacca F., Pennati G., Bove E. L., De Leval M. R., Dubini G. Multiscale modeling of the cardiovascular system: Application to the study of pulmonary and coronary perfusions in the univentricular circulation // Journal of Biomechanics. 2005. Vol. 38, iss. 5. P. 1129–1141. https://doi.org/10.1016/j.jbiomech.2004.05.027
- Zhang N., Yuan H., Chen X., Liu J., Jian Q., Huang M., Zhang K. Computational fluid dynamics characterization of two patient-specific systemic-to-pulmonary shunts before and after operation // Computational and Mathematical Methods in Medicine. 2019. Vol. 2019. Art. 1502318. https://doi.org/10.1155/2019/1502318
- Himburg H. A., Grzybowski D. M., Hazel A. L., LaMack J. A., Li X. M., Friedman M. H. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability // American Journal of Physiology — Heart and Circulatory Physiology. 2004. Vol. 286, iss. 5. P. H1916–H1922. https://doi.org/10.1152/ajpheart.00897.2003
- Migliavacca F., Pennati G., Dubini G., Fumero R., Pietrabissa R., Urcelay G., Bove E. L., Hsia T. Y., De Leval M. R. Modeling of the Norwood circulation: Effects of shunt size, vascular resistances, and heart rate // American Journal of Physiology — Heart and Circulatory Physiology. 2001. Vol. 280, iss. 5. P. H2076–H2086. https://doi.org/10.1152/ajpheart.2001.280.5.H2076
- Boumpouli M., Danton M. H. D., Gourlay T., Kazakidi A. Blood flow simulations in the pulmonary bifurcation in relation to adult patients with repaired tetralogy of Fallot // Medical Engineering & Physics. 2020. Vol. 85. P. 123–138. https://doi.org/10.1016/j.medengphy.2020.09.014
- Hsia T. Y., Cosentino D., Corsini C., Pennati G., Dubini G., Migliavacca F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome // Circulation. 2011. Vol. 124, iss. 11, suppl. 1. P. 204–210. https://doi.org/10.1161/CIRCULATIONAHA.110.010769
- Waniewski J., Kurowska W., Mizerski J. K., Trykozko A., Nowinski K., Brzezinska-Rajszys G., Kosciesza A. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: A computational fluid dynamics study // Artificial Organs. 2005. Vol. 29, iss. 8. P. 642–650. https://doi.org/10.1111/j.1525-1594.2005.29102.x
- Liu J., Yuan H., Zhang N., Chen X., Zhou C., Huang M., Jian Q., Zhuang J. 3D simulation analysis of central shunt in patient-specific hemodynamics: Effects of varying degree of pulmonary artery stenosis and shunt diameters // Computational and Mathematical Methods in Medicine. 2020. Vol. 2020. Art. 4720908. https://doi.org/10.1155/2020/4720908
- Corsini C., Migliavacca F., Hsia T. Y., Pennati G. The influence of systemic-to-pulmonary arterial shunts and peripheral vasculatures in univentricular circulations: Focus on coronary perfusion and aortic arch hemodynamics through computational multi-domain modeling // Journal of Biomechanics. 2018. Vol. 79. P. 97–104. https://doi.org/10.1016/j.jbiomech.2018.07.042
- Arnaz A., Piskin S., Oguz G. N., Yal¸cinbas Y., Pekkan K., Sarioglu T. Effect of modified Blalock – Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow // Anatolian Journal of Cardiology. 2018. Vol. 20, iss. 1. P. 2–8. https://doi.org/10.14744/AnatolJCardiol.2018.54810
- Piskin S., Altin H. F., Yildiz O., Bakir I., Pekkan K. Hemodynamics of patient–specific aorta – pulmonary shunt configurations // Journal of Biomechanics. 2017. Vol. 50. P. 166–171. https://doi.org/10.1016/j.jbiomech.2016.11.014
- Kuchumov A. G., Khairulin A., Shmurak M., Porodikov A., Merzlyakov A. The effects of the mechanical properties of vascular grafts and an anisotropic hyperelastic aortic model on local hemodynamics during modified Blalock – Taussig shunt operation, assessed using FSI simulation // Materials. 2022. Vol. 15, iss. 8. Art. 2719. https://doi.org/10.3390/ma15082719
- Madhavan S., Kemmerling E. M. C. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow // BioMedical Engineering Online. 2018. Vol. 17. Art. 66. https://doi.org/10.1186/s12938-018-0497-1
- Kuchumov A. G., Kamaltdinov M. R., Khairulin A. R., Kochergin M. V., Shmurak M. I. Patient-specific 0D-3D modeling of blood flow in newborns to predict risks of complications after surgery // Health Risk Analysis. 2022. Vol. 2022, iss. 4. P. 159–167. https://doi.org/10.21668/health.risk/2022.4.15.eng
- Callaghan F. M., Grieve S. M. Translational physiology: Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population // American Journal of Physiology – Heart and Circulatory Physiology. 2018. Vol. 315, iss. 5. P. H1174–H1181. https://doi.org/10.1152/ajpheart.00017.2018
- Hoogendoorn A., Kok A. M., Hartman E. M. J., De Nisco G., Casadonte L., Chiastra C., Coenen A., Korteland S. A., Van der Heiden K., Gijsen F. J. H., Duncker D. J., Van der Steen A. F. W., Wentzel J. J. Multidirectional wall shear stress promotes advanced coronary plaque development: Comparing five shear stress metrics // Cardiovascular Research. 2021. Vol. 116, iss. 6. P. 1136–1146. https://doi.org/10.1093/cvr/cvz212
- Soares A. A., Carvalho F. A., Leite A. Wall shear stress-based hemodynamic descriptors in the abdominal aorta bifurcation: Analysis of a case study // Journal of Applied Fluid Mechanics. 2021. Vol. 14, iss. 6. P. 1657–1668. https://doi.org/10.47176/jafm.14.06.32319
- Peiffer V., Sherwin S. J., Weinberg P. D. Computation in the rabbit aorta of a new metric – the transverse wall shear stress — to quantify the multidirectional character of disturbed blood flow // Journal of Biomechanics. 2013. Vol. 46, iss. 15. P. 2651–2658. https://doi.org/10.1016/j.jbiomech.2013.08.003
- Zhao Y., Wang H., Chen W., Sun W., Yu X., Sun C., Hua G. Time-resolved simulation of blood flow through left anterior descending coronary artery: Effect of varying extent of stenosis on hemodynamics // BMC Cardiovascular Disorders. 2023. Vol. 23, iss. 1. Art. 156. https://doi.org/10.1186/s12872-023-03190-2
- Carvalho V., Rodrigues N., Ribeiro R., Costa P. F., Teixeira J. C. F., Lima R. A., Teixeira S. F. C. F. Hemodynamic study in 3D printed stenotic coronary artery models: Experimental validation and transient simulation // Computer Methods in Biomechanics and Biomedical Engineering. 2021. Vol. 24, iss. 6. P. 623–636. https://doi.org/10.1080/10255842.2020.1842377
- Renner J., Broch O., Duetschke P., Scheewe J., Hocker J., Moseby M., Jung O., Bein B. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery // British Journal of Anaesthesia. 2012. Vol. 108, iss. 1. P. 108–115. https://doi.org/10.1093/bja/aer371
- Santoro G., Capozzi G., Caianiello G., Palladino M. T., Marrone C., Farina G., Russo M. G., Calabro R. Pulmonary artery growth after palliation of congenital heart disease with duct-dependent pulmonary circulation: Arterial duct stenting versus surgical shunt // Journal of the American College of Cardiology. 2009. Vol. 54, iss. 23. P. 2180–2186. https://doi.org/10.1016/j.jacc.2009.07.043
- Zahorec M., Hrubsova Z., Skrak P., Poruban R., Nosal M., Kovacikova L. A comparison of Blalock – Taussig shunts with and without closure of the ductus arteriosus in neonates with pulmonary atresia // The Annals of Thoracic Surgery. 2011. Vol. 92, iss. 2. P. 653–658. https://doi.org/10.1016/j.athoracsur.2011.04.008
- Barnea O., Austin E. H., Richman B., Santamore W. P. Balancing the circulation: Theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome // Journal of the American College of Cardiology. 1994. Vol. 24, iss. 5. P. 1376–1381. https://doi.org/10.1016/0735-1097(94)90123-6
- Moghadam M. E., Migliavacca F., Vignon-Clementel I. E., Hsia T. Y., Marsden A. L. Optimization of shunt placement for the Norwood surgery using multi-domain modeling // Journal of Biomechanical Engineering. 2012. Vol. 134, iss. 5. Art. 051002. https://doi.org/10.1115/1.4006814
- Barnea O., Santamore W. P., Rossi A., Salloum E., Chien S., Austin E. H. Estimation of oxygen delivery in newborns with a univentricular circulation // Circulation. 1998. Vol. 98, iss. 14. P. 1407–1413. https://doi.org/10.1161/01.CIR.98.14.1407
- Esmaily-Moghadam M., Murtuza B., Hsia T. Y., Marsden A. Simulations reveal adverse hemodynamics in patients with multiple systemic to pulmonary shunts // Journal of Biomechanical Engineering. 2015. Vol. 137, iss. 3. Art. 031001. https://doi.org/10.1115/1.4029429
- Singh D., Sernich S., Siwik E., Ross-Ascuitto N. T., Celestin C., Ascuitto R. J. Catheter-directed thrombolysis for occluded central (ascending aorta-to-pulmonary artery) shunts: Importance of shear stress-induced, platelet-mediated thrombosis // Journal of Structural Heart Disease. 2016. Vol. 2, iss. 3. P. 67–78. https://doi.org/10.12945/j.jshd.2016.002.15
- Xu L., Chen X., Cui M., Ren C., Yu H., Gao W., Li D., Zhao W. The improvement of the shear stress and oscillatory shear index of coronary arteries during Enhanced External Counterpulsation in patients with coronary heart disease // PLoS ONE. 2020. Vol. 15, iss. 3. Art. e0230144. https://doi.org/10.1371/journal.pone.0230144
- Dai W. F., Wu P., Liu G. M. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device // International Journal of Artificial Organs. 2021. Vol. 44, iss. 7. P. 471–480. https://doi.org/10.1177/0391398820975405
- Xiong J., Sun Q., Qian Y., Hu L., Tong Z., Liu J., Liu J. Effects of patent ductus arteriosus on the hemodynamics of modified Blalock – Taussig shunt based on patient-specific simulation // Frontiers in Physiology. 2021. Vol. 12. P. 1–10. https://doi.org/10.3389/fphys.2021.707128
- Caspi J., Pettitt T. W., Mulder T., Stopa A. Development of the pulmonary arteries after the Norwood procedure: Comparison between Blalock – Taussig shunt and right ventricular-pulmonary artery conduit // Annals of Thoracic Surgery. 2008. Vol. 86, iss. 4. P. 1299–1304. https://doi.org/10.1016/j.athoracsur.2008.06.016
- Brandt B., Camacho J. A., Mahoney L. T., Heintz S. E. Growth of the pulmonary arteries following Blalock – Taussig shunt // Annals of Thoracic Surgery. 1986. Vol. 42, iss. 6. P. S1–S4. https://doi.org/10.1016/S0003-4975(10)64631-0
- Odim J., Portzky M., Zurakowski D., Wernovsky G., Burke R. P., Mayer J. E., Castaneda A. R., Jonas R. A. Sternotomy approach for the modified Blalock – Taussig shunt // Circulation. 1995. Vol. 92, iss. 9. P. 256–261. https://doi.org/10.1161/01.CIR.92.9.256
- Kiran U., Aggarwal S., Choudhary A., Uma B., Kapoor P. M. The Blalock and Taussig shunt revisited // Annals of Cardiac Anaesthesia. 2017. Vol. 20, iss. 3. P. 323–330. https://doi.org/10.4103/aca.aca_80_17
- Xu P., Yuan H., Zhuang J., Zhang N., Jia Q., Dong Y., Jian Q., Huang M. The hemodynamics of patent ductus arteriosus in patients after central shunt operation // Computational and Mathematical Methods in Medicine. 2021. Vol. 2021. Art. 6675613. https://doi.org/10.1155/2021/6675613
- 475 просмотров