Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Выгодчикова И. Ю. О модификации алгоритма Валле-Пуссена для аппроксимации многозначного отображения алгебраическим полиномом с ограничением типа равенства // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2014. Т. 14, вып. 4, ч. 2. С. 526-532. DOI: 10.18500/1816-9791-2014-14-4-526-532, EDN: TBDAGP

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
01.12.2014
Полный текст:
(downloads: 209)
Язык публикации: 
русский
Рубрика: 
УДК: 
517.518.826, 519.65
EDN: 
TBDAGP

О модификации алгоритма Валле-Пуссена для аппроксимации многозначного отображения алгебраическим полиномом с ограничением типа равенства

Авторы: 
Выгодчикова Ирина Юрьевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Рассматривается дискретная задача аппроксимации зашумлённых данных алгебраическим полиномом с ограничением типа равенства. Цель исследования — получение свойств решения задачи и разработка на их основе нового, более эффективного, по сравнению с существующими приёмами решения, алгоритма. Задачи исследования—получение свойств решения задачи, изложение алгоритма и демонстрация его реализации. Методика исследования продолжает аппарат П. Л. Чебышёва и алгоритмизацию Валле-Пуссена. Получен критерий оптимальности решения, являющийся модификацией известного в теории приближений альтернанса П. Л. Чебышёва. Разработан рациональный алгоритм решения по аналогии с алгоритмом Валле-Пуссена. Рассматриваемая задача может применяться для оценки шумовых явлений при аппроксимации сложных хаотических процессов.

Список источников: 
  1. Выгодчикова И. Ю. О единственности решения задачи наилучшего приближения многозначного отображения алгебраическим полиномом // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2006. Т. 6, вып. 1, 2. С. 11–19.
  2.  Зуховицкий С. И., Авдеева Л. И. Линейное и выпуклое программирование. М. : Наука, 1967. 460 с.
  3.  Выгодчикова И. Ю. О методе аппроксимации многозначного отображения алгебраическим полиномом // Вестн. СГТУ. Сер. Математика и механика. 2013. Вып. 2(70). C. 7–12.
  4. Выгодчикова И. Ю. Об условной задаче наилучшего приближения сегментной функции алгебраическим полиномом // Математика. Механика : сб. науч. тр. Саратов : Изд-во Сарат. ун-та, 2008. Вып. 10. С. 12–15.
  5.  Демьянов В. Ф., Малоземов В. Н. Введение в минимакс. М. : Наука, 1972. 368 с.
  6. Выгодчикова И. Ю. О монотонном алгоритме решения задачи аппроксимации сегментной функции алгебраическим полиномом с ограничением // Математика. Механика : сб. науч. тр. Саратов : Изд-во Сарат. ун-та, 2012. Вып. 14. С. 20–23.
Поступила в редакцию: 
16.06.2014
Принята к публикации: 
10.11.2014
Опубликована: 
01.12.2014