Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Малеко Е. М. Обобщение метода А. А. Дородницына приближенного вычисления собственных чисел и собственных векторов симметричных матриц на случай самосопряженных дискретных операторов // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2011. Т. 11, вып. 3. С. 20-29. DOI: 10.18500/1816-9791-2011-11-3-2-20-29

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
10.08.2011
Полный текст:
(downloads: 156)
Язык публикации: 
русский
Рубрика: 
УДК: 
517.984

Обобщение метода А. А. Дородницына приближенного вычисления собственных чисел и собственных векторов симметричных матриц на случай самосопряженных дискретных операторов

Авторы: 
Малеко Е. М., Магнитогорский государственный технический университет им. Г. И. Носова
Аннотация: 

Пусть A –- самосопряженный дискретный оператор с простым спектром, действующий в сепарабельном гильбертовом пространстве H и имеющий там ядерную резольвенту, B –- са- мосопряженный и ограниченный в H оператор. Тогда можно подобрать такое ε > 0, что собственные числа и собственные функции возмущенного оператора A + εB будут вычисляться по методу А. А. Дородницына.

Список источников: 
  1. Дородницын А. А. Избранные научные труды: в 2 т. Т. 1. М.: ВЦ РАН, 1997. 396 с.
  2. Вержбицкий В. М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения): учеб. пособие для вузов. М.: Высш. шк., 2001. 382 с.
  3. Лизоркин П. И. Курс дифференциальных и интегральных уравнений с дополнительными главами анализа. М.: Наука, 1981. 384 с.
  4. Смирнов В. И. Курс высшей математики: в 5 т. Т. 2. М.: Наука, 1967. 656 с.
  5. Степанов В. В. Курс дифференциальных уравнений. М.: Гос. изд-во ТТЛ, 1953. 468 с.