Для цитирования:
Zemlyanukhin A. I., Bochkarev A. V., Ratushny A. V., Chernenko A. V. Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells [Землянухин А. И., Бочкарев А. В., Ратушный А. В., Черненко А. В. Обобщенная модель нелинейно-упругого основания и продольные волны в цилиндрических оболочках] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22, вып. 2. С. 196-204. DOI: 10.18500/1816-9791-2022-22-2-196-204, EDN: EAHYFO
Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells
[Обобщенная модель нелинейно-упругого основания и продольные волны в цилиндрических оболочках]
Выведено неинтегрируемое квазигиперболическое уравнение шестого порядка, моделирующее осесимметричное распространение продольных волн вдоль образующей цилиндрической оболочки Кирхгофа – Лява, взаимодействующей с нелинейно-упругой средой. Введена в рассмотрение шестипараметрическая обобщенная модель нелинейно-упругой среды, сводящаяся в частных случаях к моделям Винклера, Пастернака и Хетеньи. Вывод уравнения осуществлен асимптотическим методом многих масштабов в предположении, что безразмерные параметры нелинейности, дисперсии и тонкостенности имеют одинаковый порядок малости. Использование введенной модели позволило выявить дополнительные высокочастотные и низкочастотную дисперсии, характеризующие реакцию внешней среды на изгиб и сдвиг. Показано, что для выявления нелинейных эффектов, компенсирующих дисперсию, необходимо использовать неклассические теории оболочек. Установлено, что модель Пастернака допускает «бездисперсионное» состояние, когда дисперсия, обусловленная инерцией нормального перемещения, компенсируется дисперсией, порождаемой реакцией нелинейно-упругого основания на сдвиг.
- Winkler E. Die Lehre von der Elastizitat und Festigkeit. Prague, Verlag von H. Dominicus, 1867. 388 S. (in German).
- Biot M. A. Bending of an infinite beam on an elastic foundation. Journal of Applied Mechanics, 1937, vol. 4, no. 1, pp. A1–A7. https://doi.org/10.1115/1.4008739
- Filonenko-Borodich M. Some approximate theories of elastic foundation. Uchenyie Zapiski Moskovkogo Gosudarstuennogo Universiteta. Mekhanika, 1940, vol. 46, pp. 3–18 (in Russian).
- Pasternak P. L. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Moscow, Gosstrojizdat, 1954. 56 p. (in Russian).
- Hetenyi M. Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering. Ann Arbor, University of Michigan Press, 1958. 255 p.
- Vlasov V. Z., Leont’ev N. N. Beams, Plates and Shells on Elastic Foundations. Jerusalem, Israel, Israel Program for Scientific Translations, 1966. 357 p.
- Thompson J. M. T. Advances in shell buckling: Theory and experiments. International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 1, Art. 1530001. https://doi.org/10.1142/S0218127415300013
- Hunt G. Buckling in space and time. Nonlinear Dynamics, 2006, vol. 43, pp. 29–46. https://doi.org/10.1007/s11071-006-0748-8
- Champneys A. R., Hunt G. W., Thompson J. M. T. Localization and solitary waves in solid mechanics. Philosophical Transactions of the Royal Society A, 1997, vol. 355, pp. 2077–2081. https://doi.org/10.1098/rsta.1997.0110
- Kerr A. D. On the formal development of elastic foundation models. Ingenieur-Archiv, 1984, vol. 54, no. 6, pp. 455–464. https://doi.org/10.1007/BF00537376
- Younesian D., Hosseinkhani A., Askari H., Esmailzadeh E. Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modeling and applications. Nonlinear Dynamics, 2019, vol. 97, pp. 853–895. https://doi.org/10.1007/s11071-019-04977-9
- Dillard D., Mukherjee B., Karnal P., Batra R. C., Frechette J. A review of Winkler’s foundation and its profound influence on adhesion and soft matter applications. Soft Matter, 2018, vol. 14, pp. 3669–3683. https://doi.org/10.1039/C7SM02062G
- Kaplunov J., Prikazchikov D. A., Rogerson G. A. Edge bending wave on a thin elastic plate resting on a Winkler foundation. Proceedings of the Royal Society A, 2016, vol. 472, Art. 20160178. https://doi.org/10.1098/rspa.2016.0178
- Kaplunov J., Nobili A. The edge waves on a Kirchhoff plate bilaterally supported by a two-parameter elastic foundation. Journal of Vibration and Control, 2017, vol. 23, no. 12, pp. 2014–2022. https://doi.org/10.1177/1077546315606838
- Indeitsev D. A., Kuklin T. S., Mochalova Yu. A. Localization in a Bernoulli – Euler beam on an inhomogeneous elastic foundation. Vestnik St. Petersburg University: Mathematics, 2015, vol. 48, no. 1, pp. 41–48. https://doi.org/10.3103/S1063454115010069
- Indeitsev D. A., Osipova E. V. Localization of nonlinear waves in elastic bodies with inclusions. Acoustical Physics, 2004, vol. 50, pp. 420–426. https://doi.org/10.1134/1.1776219
- Erofeev V. I., Leontieva A. V. Dispersion and spatial localization of bending waves propagating in a Timoshenko beam laying on a nonlinear elastic base. Mechanics of Solids, 2021, vol. 56, no. 4, pp. 443–454. https://doi.org/10.3103/S0025654421040051
- Erofeev V. I., Leonteva A. V. Localized bending and longitudinal waves in rods interacting with external nonlinear elastic medium. Journal of Physics: Conference Series, 2019, vol. 1348, Art. 012004. https://doi.org/10.1088/1742-6596/1348/1/012004
- Zemlyanukhin A. I., Bochkarev A. V. Axisymmetric nonlinear modulated waves in a cylindrical shell. Acoustical Physics, 2018, vol. 64, pp. 408–414. https://doi.org/10.1134/S1063771018040139
- Zemlyanukhin A. I., Bochkarev A. V., Andrianov I. V., Erofeev V. I. The Schamel – Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. Journal of Sound and Vibration, 2021, vol. 491, 115752. https://doi.org/10.1016/j.jsv.2020.115752
- Stepanyants Y. A. On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons. Chaos, Soliton and Fractals, 2006, vol. 28, no. 1, pp. 193–204. https://doi.org/10.1016/j.chaos.2005.05.020
- Volmir A. The Nonlinear Dynamics of Plates and Shells. Foreign Tech. Div., Wright-Patterson AFB, 1974. 450 p.
- Bochkarev A. V., Zemlyanukhin A. I., Mogilevich L. I. Solitary waves in an inhomogeneous cylindrical shell interacting with an elastic medium. Acoustical Physics, 2017, vol. 63, pp. 148–153. https://doi.org/10.1134/S1063771017020026
- Ostrovsky L. A. Nonlinear internal waves in a rotating ocean. Okeanologia, 1978, vol. 18, no. 2, pp. 181–191.
- Conte R., Musette M. The Painleve Handbook. Springer, Berlin, 2008. https://doi.org/10.1007/978-1-4020-8491-1
- Pelinovsky E. N., Didenkulova (Shurgalina) E. G., Talipova T. G., Tobish E., Orlov Yu. F., Zen’kovich A. V. Korteweg – de Vries type equations in applications. Transactions of NNSTU n.a. R. E. Alekseev, 2018, no. 4, pp. 41–47 (in Russian). https://doi.org/10.46960/1816-210X_2018_4_41
- Obregon M. A., Stepanyants Yu. A. On numerical solution of the Gardner – Ostrovsky equation. Mathematical Modelling of Natural Phenomena, 2012, vol. 7, no. 2, pp. 113–130. https://doi.org/10.1051/mmnp/20127210
- Stepanyants Yu. A. Nonlinear waves in a rotating ocean (The Ostrovsky equation and its generalizations and applications). Izvestiya, Atmospheric and Oceanic Physics, 2020, vol. 56, pp. 16–32. https://doi.org/10.1134/S0001433820010077
- Grimshaw R. H. J., Helfrich K., Johnson E. R. The reduced Ostrovsky equation: Integrability and breaking. Studies in Applied Mathematics, 2012, vol. 129, no. 4, pp. 414–436. https://doi.org/10.1111/j.1467-9590.2012.00560.x
- Galkin V. N., Stepanyants Yu. A. On the existence of stationary solitary waves in a rotating fluid. Journal of Applied Mathematics and Mechanics, 1991, vol. 55, iss. 6, pp. 939–943. https://doi.org/10.1016/0021-8928(91)90148-N
- 1693 просмотра